

國立中央大學天文研究所 鹿林天文台年報

 $\mathbf{2024}$

No.22

國立中央大學天文研究所 編

Contents

Ι	SCI 期刊論文	1
ç	SCI 期刊論文	2
I	Earth and Planetary	
	Postperihelion Cometary Activity on the Outer Main-belt Asteroid 2005 XR132, Cheng YC., et al. 2024, The Planetary Science Journal, Volume 5, Issue 3, id.78, 11 pp	2
C.	Solar and Stellar Astrophysics	
	Photometric Metallicity and Distance for the Two RR Lyrae in Segue II and Ursa Major II Dwarf Galaxies Based on Multiband Light Curves, Ngeow CC., et al. 2024, The Astronomical Journal, Volume 167, Issue 1, id.42, 8 pp.	4
	Discovery of RR Lyrae in the Ultra-faint-dwarf Galaxy Virgo III, Ngeow CC., et al. 2024, The Astronomical Journal, Volume 168, Issue 1, id.8, 8 pp	5
ł	High Energy Astrophysical Phenomena	
	Optical variability of the blazar 3C 371: From minute to year timescales, Otero-Santos J., et al. 2024, Astronomy & Astrophysics, Volume 686, id.A228, 19 pp	6
	Strong Carbon Features and a Red Early Color in the Underluminous Type Ia SN 2022xkq, Pearson J., et al. 2024, The Astrophysical Journal, Volume 960, Issue 1, id.29, 28 pp.	8
	Multi-year characterisation of the broad-band emission from the intermittent extreme BL Lac 1ES 2344+514, MAGIC Collaboration, et al. 2024, Astronomy & As- trophysics, Volume 682, id A114, 26 pp.	10
	Flight of the Bumblebee: the Early Excess Flux of Type Ia Supernova 2023bee Revealed by TESS, Swift, and Young Supernova Experiment Observations, Wang Q., et al. 2024. The Astrophysical Journal. Volume 962. Issue 1, id.17, 18 pp.	12
	Discovery of the Optical and Radio Counterpart to the Fast X-Ray Transient EP 240315a, Gillanders J. H., et al. 2024, The Astrophysical Journal Letters, Vol- ume 969, Issue 1, id.L14, 12 pp	14
	Final Moments. II. Observational Properties and Physical Modeling of Circumstellar- material-interacting Type II Supernovae, Jacobson-Galán W. V., et al. 2024, The Astrophysical Journal, Volume 970, Issue 2, id.189, 39 pp.	16
	Testing particle acceleration in blazar jets with continuous high-cadence optical po- larization observations, Liodakis I., et al. 2024, Astronomy & Astrophysics, Volume 689, id A200, 9 pp	18
	$\mathbf{vorume} \mathbf{vor}, \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{v} \mathbf{v}, \mathbf{v} \mathbf{p} \mathbf{p} \mathbf{v} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} u$	10

SN 2024ggi in NGC 3621: Rising Ionization in a Nearby, Circumstellar-material- interacting Type II Supernova, Jacobson-Galán W. V., et al. 2024, The Astro- physical Journal, Volume 972, Issue 2, id.177, 13 pp	20
SN 20220qm: A Bright and Multipeaked Calcium-rich Transient, Yadavalli S. K., et al. 2024, The Astrophysical Journal, Volume 972, Issue 2, id.194, 27 pp	22
A wiggling filamentary jet at the origin of the blazar multi-wavelength behaviour, Raiteri C. M., et al. 2024, Astronomy & Astrophysics, Volume 692, id.A48, 14 pp	24
Plasma Physics	
Airglow observed by a full-band imager together with multi-instruments in Taiwan during nighttime of 1 November 2021, Liu JY., et al. 2024, Advances in Space Research, Volume 73, Issue 1, p. 663-671.	26
II 研究報告	27
Thesis	28
利用全波段全天影像儀觀測夜間大氣暉光	28
Taxonomic Classification and Orbital Dynamics of Near-Earth Asteroids $\ . \ . \ . \ .$	30
月球碰撞閃焰觀察系統之設立及資料處理分析	32
Progress Report	34
GLAST-AGILE Support Program (GASP) project	34
Young Supernova Experiment	38
Kinder (kilonova finder) project	40
Taiwan's participation in the ExoClock Project	45
Systematic analysis of the Taiwan Meteor Detector System (TMDS)	47
Lulin-ASIAA Telescope for Transients and Education (LATTE)	54
Robotic Imager For Transients (RIFT)	55
Initial results from the observations of the Lunar Impact Flashes by the IULIP project	- 55 - 62
小至主八八八元件九柏被 (Im oky Imgiow Imagor) · · · · · · · · · · · · · · · · · · ·	02
其他 The Astronomic Telement	65 65
CPR Coordinates Network	65 65
Transient Name Server AstroNote	66 66
	00
III 工作報告	68
營運報告	69
鹿林天文台一米望遠鏡 (LOT) 觀測時數統計	69
LOT 觀測研究計畫統計	72

鹿林天文台合作計畫	79
團體參觀及教學觀測	80
歷年 SCI 期刊論文統計	83
更新與維修	85
LOT	85
SLT	91
LWT	93
LATTE	94
RoLIFE 月撞閃光望遠鏡	95
流星監測系統	96
其他軟硬體設施	97
其他	$\begin{array}{c} 100 \\ 104 \end{array}$

IV	新聞媒體報導	106
	歷年新聞媒體報導統計 (1998-2024)	107
	新聞媒體報導	108
	中大新聞網報導	172

I SCI 期刊論文

THE PLANETARY SCIENCE JOURNAL, 5:78 (11pp), 2024 March © 2024. The Author(s). Published by the American Astronomical Society. **OPEN ACCESS**

Postperihelion Cometary Activity on the Outer Main-belt Asteroid 2005 XR₁₃₂

Yu-Chi Cheng (鄭宇棋)^{1,2}⁶, Bryce T. Bolin^{3,12}⁶, Michael S. P. Kelley⁴⁶, D. Bodewits⁵⁶, Quanzhi Ye (葉泉志)^{6,7}⁶, Christoffer Fremling⁸⁶, Zhong-Yi Lin (林忠義)⁹⁶, Ya-Lin Wu (吳亞霖)^{1,2}⁶, Reed L. Riddle¹⁰⁶, Wing-Huen Ip (葉永烜)⁹⁶,

Steven L. Groom¹¹[®], and Russ R. Laher (良主嶺亞)¹¹[®] ¹Department of Physics, National Taiwan Normal University, No. 88, Sect. 4, Tingzhou Road, Wenshan Dist., Taipei City, 116325 Taiwan;

yuchi.cheng@gapps.ntnu.edu.tw

² Center of Astronomy and Gravitation, National Taiwan Normal University, No. 88, Sect. 4, Tingzhou Road, Wenshan Dist., Taipei City, 116325 Taiwan ³ Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA

⁴ Department of Astronomy, University of Maryland, College Park, MD 20742-0001, USA

¹ Department of Astronomy, University of Maryland, College Park, MD 20/42-0001, USA
 ⁵ Department of Physics, Auburn University, Edmund C. Leach Science Center, Auburn, AL 36849, USA
 ⁶ Department of Astronomy, University of Maryland, College Park, MD 20742, USA
 ⁷ Center for Space Physics, Boston University, 725 Commonwealth Avenue, Boston, MA 02215, USA
 ⁸ Caltech Optical Observatories, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
 ⁹ Institute of Astronomy, National Central University, No. 300, Zhongda Road, Zhongli Dist., Taoyuan City, 320317 Taiwan
 ¹⁰ California Institute of Technology, 1200 E. California Boulevard, MC 11-17, Pasadena, CA 91125-1700, USA
 ¹¹ IPAC, California Institute of Technology, 1200 E. California Boulevard, CA 91125, USA

¹¹IPAC, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA Received 2023 June 7; revised 2023 December 21; accepted 2024 January 23; published 2024 March 26

Abstract

We report comet-like activity on the outer main-belt asteroid 2005 XR₁₃₂ discovered by the Lulin One-meter Telescope in early 2021 April. A series of follow-up observations were triggered to characterize the morphology and brightness variation of 2005 XR₁₃₂. Long-term photometric data of the 2020 perihelion return reveal a 2 mag fading in 120 days, starting 20 days postperihelion, attributed to decreased cometary activity. Even though no variation indicative of the rotational period can be found in our data, we infer an a/b axial ratio of 1.32, given that the lower limit of rotational amplitude is 0.3 mag. A visible spectrum and broadband color support that 2005 XR132 has a reflectance feature similar to a BR-type Centaur object. The syndyne and synchrone simulations reveal a lowspeed dust ejecta consisting of millimeter-sized dust grains released shortly after the perihelion passage. We demonstrate that 2005 XR_{132} has a short dynamical lifetime of 0.12 Myr, with <5% of it in the near-Earth space. Due to the strong gravitational influence from Jupiter and Saturn, the asteroid has followed a random walk orbital migrating process. We also find that since 1550 CE, the perihelion distance of 2005 XR_{132} has gradually decreased from 2.8 to 2.0 au, likely due to the Kozai-Lidov effect, which potentially reactivated the dormant nucleus. All these dynamical properties support a cometary origin for 2005 XR₁₃₂ rather than an ice-rich main-belt object kicked out from a stable orbit, although current observational evidence has yet to confirm repeating cometary activities.

Unified Astronomy Thesaurus concepts: Asteroid dynamics (2210); Comet dust tails (2312); Optical astronomy (1776); Broad band photometry (184)

Supporting material: data behind figure, machine-readable table

1. Introduction

Understanding the mechanisms of material transportation during the formative years of the solar system is crucial to studying the origins of life and the distribution of water on terrestrial planets. The D/H ratio of all comets spans a broad range from similar to Earth's water to multiple times higher, whereas the meteoritic record suggests that the D/H ratio of asteroids is more similar (Altwegg et al. 2015). The "wet" asteroids in the outer main asteroid belt may be another potential candidate (Kelley et al. 2023).

The Hilda family of asteroids and Jupiter Trojans, both of which are tightly controlled by Jupiter's 3:2 and 1:1 meanmotion resonance (MMR), respectively, are among the most prevalent asteroid populations found within the outer reaches of

Original content from this work may be used under the terms ((of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

the main asteroid belt. They are dynamically stable over billions of years (Franklin et al. 2004) and are believed to be the remnants of planet migration (Lykawka & Horner 2010; Emery et al. 2015). In addition, the C/P/D surface reflectance feature (DeMeo & Carry 2014) can be attributed to organic-rich material with limited thermal exposing history ever since they were formed primordially or migrated from the outer solar system. Even though they are currently locked by a resonance, Di Sisto et al. (2005, 2019) pointed out that a small fraction of Hildas can be kicked out to chaotic orbits and become asteroids in cometary orbits (ACOs) if they temporarily remain inactive or comets if solar radiation can trigger the sublimation process when approaching the Sun. The ACO population consists of different kinds of dynamically unstable objects including dormant comets, near-Earth objects, and escaped main-belt objects. Consequently, ACOs provide an opportunity to study the physical properties of cometary nuclei, which are usually hidden by the coma.

Gravitational perturbation by Jupiter is the major driver for transporting minor objects inward from the outer solar system or vice versa. Numerical simulation indicates that during the

¹² NASA Postdoctoral Program Fellow.

THE PLANETARY SCIENCE JOURNAL, 5:78 (11pp), 2024 March

inward orbital transferring process, some periodic comets may be shortly locked by 1:1, 3:2, or high-order orbital resonance of Jupiter not more than a thousand years (Belbruno & Marsden 1997; Koon et al. 2002; Horner & Evans 2006) and even become a temporary satellite capture (Howell et al. 2001; Emel'yanenko 2012) if it is suddenly trapped by the gravitational field of Jupiter. The quasi-Hilda comets (Kresak 1979; Toth 2006; Ohtsuka et al. 2008) are the most populated subgroup of Jupiter-family comets (JFCs) temporarily captured by the 3:2 Hilda resonance.

The Tisserand parameter is an invariant quantity to assess the gravitational perturbation in a restricted three-body system. It is an indicator of objects in high-eccentricity planet-crossing orbits in which the gravitational perturbation of the planet strongly reduces dynamical stability. In the inner solar system, the Tisserand parameter respective to Jupiter (T_J) provides a dynamical view that implicates the possible origin of the bodies. Objects with T_J between 2 and 3 and $T_J < 2$ indicate they originate from the Kuiper Belt and the Oort Cloud, respectively, whereas objects in the main asteroid belt have T_J > 3, revealing that they are primordially formed (Vaghi 1973; Levison 1996). This dynamical feature is commonly used to identify objects with cometary origins in the main asteroid belt and the near-Earth population. However, Hsieh & Haghighipour (2016) noticed that $T_J = 3$ is not a clear boundary to separate asteroids and comets. During the 2 Myr orbital integration period, some objects with $3.0 < T_J < 3.1$ have spent 30% of the time on the opposite side of the $T_{\rm J} = 3.05$ boundary, given an indistinct range to identify the origin of the objects.

Consequently, Tancredi (2014) proposed a rigorous selection criterion for the cometary-originated bodies considering the Tisserand parameter (T_{I}) , minimum orbital intersection distance (MOID), and MMR respective to Jupiter. In addition, Gil-Hutton & García-Migani (2016) employed a numerical approach to identify 11 potential quasi-Hildas of cometary origin. They performed a 50,000 yr simulation of their previous orbits and used the results to select the candidates. Recently, several ACOs have been reidentified as comets with the improvement of large telescopes and wide-field surveys, such as 212P/2000 YN₃₀ (Cheng & Ip 2013), 282P/2003 BM₈₀ (Chandler et al. 2022), and 362P/2008 GO98 (García-Migani & Gil-Hutton 2018; Borysenko et al. 2019; Kokhirova et al. 2021). It is interesting to have detailed observations for understanding the origin, orbital evolution, and driver of their resurgent activities.

The asteroid 2005 XR₁₃₂ (hereafter XR₁₃₂) is located in the outer main asteroid belt with a highly eccentric orbit $(a = 3.763 \text{ au}, e = 0.432, i = 14.47^{\circ},$ O = 5.389au, $T_{\rm J} = 2.868$) close to the 13:8 high-order MMR of Jupiter. Even though XR_{132} is a Jupiter crosser ($Q > Q_J$), the highinclination orbit makes the current MOID of Jupiter as large as 0.704 au. Following the selection criterion by Tancredi (2014), XR₁₃₂ essentially belongs to the ACO-Jupiter family, as it is a Jupiter crosser with a Tisserand parameter $T_{\rm I}$ between 2 and 3. It has a diameter of 3.4 km assuming an albedo of 4% for a typical D-type object, which we derived from the broadband color. It was discovered in 2005 December by the Spacewatch project at Kitt Peak with an asteroidal appearance. There have been limited astrometric and photometric reports since the discovery in 2005 because of the unfavorable observing conditions in the 2006 and 2013 apparitions. According to

Cheng et al.

the reports in the Minor Planet Center, all observations were conducted with a true anomaly ν greater than 80° ($r_h > 2.83$ au), and no evidence of cometary activity was observed. In this paper, we use both observational evidence and dynamical simulations to characterize the coma morphology, activity, and possible origin of XR₁₃₂. We present our photometry, spectroscopic observations, and data-mining results in Section 2. Orbital evolution and dust dynamics are presented in Sections 3 and 4. We discuss the implications in Section 5 and conclude in Section 6.

2. Observation

Comet-like activity in XR_{132} was first detected in an observation obtained with the Lulin One-meter Telescope (LOT) in Taiwan (Cheng et al. 2021). Subsequently, we conducted a series of target-of-opportunity (ToO) observations in both imaging and spectroscopy with the Hale Telescope at Palomar Observatory, Keck I, and LOT and also analyzed archive images from several sky survey projects collected by the Canadian Astronomy Data Centre (CADC) online service (Gwyn et al. 2012). This platform allowed us to search the archives of the Zwicky Transient Facility (ZTF; Smith et al. 2014), the Subaru Hyper Suprime-Cam (Subaru HSC; Miyazaki et al. 2018), and the Dark Energy Camera (DECam) mounted on the Blanco telescope at the Cerro Tololo Inter-American Observatory (Flaugher et al. 2015). Given the nonsidereal motion of XR_{132} , we used the 2D trail fitting method (Vereš et al. 2012; Fraser et al. 2016) to optimize the shape of the photometric aperture that can minimize the photometric uncertainty in these survey observations. We briefly introduce the instrumental setup and analytic method in the following section and summarize the observing result. Table 1 lists the observing log of the images we analyzed, except for the ZTF observations, whose observing trajectories are shown in the bottom panel of Figure 4 and can be found in the full version of the table.

2.1. Optical Observation

2.1.1. LOT

The LOT is a 1 m Trebur Cassegrain Telescope (F/8) equipped with a SOPHIA 2048B $2k \times 2k$ CCD camera manufactured by Princeton Instruments. The pixel scale of 0"768 under the bin 2 readout mode is suitable for the average seeing condition of 1."3 at the Lulin Observatory. To perform the broadband color measurement, standard Johnson BVRI filters are used. The photometric calibration was conducted using the Pan-STARRS DVO catalog (ps1 _pv3 _20170110; Magnier et al. 2020), with filter transformation coefficients by Tonry et al. (2012). We evaluated the zero-point magnitude of individual frames by cross-matching the measured flux of numerous field stars and their brightness recorded in the DVO catalog. The absolute brightness of our target can be derived through the zero-point and the total flux. We adopted this method to analyze the observing images obtained by the Palomar 200 inch Hale Telescope (P200), Keck I, and Blanco introduced in the following sections. Stacked *R*-band images are shown in Figure 1. We requested 2 nights of ToO observations including a 3 hr consecutive R-band observation to confirm the comet-like feature of XR_{132} and try to derive the

13 https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/ssois/

THE ASTRONOMICAL JOURNAL, 167:42 (8pp), 2024 January © 2024. The Author(s). Published by the American Astronomical Society. OPEN ACCESS

Photometric Metallicity and Distance for the Two RR Lyrae in Segue II and Ursa Major **II Dwarf Galaxies Based on Multiband Light Curves**

Chow-Choong Ngeow¹ and Anupam Bhardwaj² ¹ ¹Graduate Institute of Astronomy, National Central University, 300 Jhongda Road, 32001 Jhongli, Taiwan; cngeow@astro.ncu.edu.tw ²INAF-Osservatorio astronomico di Capodimonte, Via Moiariello 16, I-80131 Napoli, Italy Received 2023 November 2; revised 2023 November 28; accepted 2023 December 1; published 2024 January 2

Abstract

Multiband light curves of two RR Lyrae variables in Segue II and Ursa Major II ultrafaint dwarf galaxies were collected from near simultaneous observations using the Lulin One-meter Telescope in Vgri bands. Together with Gaia G-band light curves, we determined photometric metallicities using empirical relations involving pulsation period and Fourier parameter as dependent parameters. We demonstrated that the RR Lyrae photometric metallicity can be determined accurately when these empirical relations were employed at multiple wavelengths, which can potentially improve the distance determination based on RR Lyrae stars. The photometric metallicities based on our approach were found to be -2.27 ± 0.13 dex and -1.87 ± 0.16 dex for the RR Lyrae in Segue II and Ursa Major II UFD, respectively, with corresponding distance moduli of 17.69 ± 0.15 mag and 17.58 ± 0.15 mag, in agreement with previous literature determinations. This approach of photometric metallicity of RR Lyrae based on multiband optical light curves will be particularly relevant for distance measurements in the era of the Vera C Rubin's Legacy Survey of Space and Time.

Unified Astronomy Thesaurus concepts: Stellar distance (1595); Metallicity (1031); Dwarf galaxies (416); RR Lyrae variable stars (1410)

Supporting material: machine-readable tables

1. Introduction

The old-population pulsating stars RR Lyrae are well-known distance indicators because they exhibit an absolute V-band magnitude-metallicity relation and well-defined period-luminosity (-metallicity) relations in other filters (for a review, see Bhardwaj 2020). In most cases, the metallicity of RR Lyrae, parameterized as [Fe/H], needs to be known a priori to apply these relations. The best [Fe/H] measurements are based on (highresolution) spectroscopic observations. However, such observations could be time consuming and are only limited to relatively bright RR Lyrae in the milky Way. Alternatively, [Fe/H] can be obtained using the light-curve information, as shown in the seminar paper by Jurcsik & Kovacs (1996). The [Fe/H] measured using this approach, known as photometric metallicity, is expected to be widely applied to the distant RR Lyrae discovered from the multiband time-domain sky surveys, especially the Vera C. Rubin Observatory's Legacy Survey of Space and Time (LSST; Ivezić et al. 2019), because only few spectrographs on large-aperture telescopes, or perhaps none, can be used to collect high-resolution spectra of very distant RR Lyrae stars.

In the past, RR Lyrae photometric metallicities were typically obtained using light-curve structure information in a single filter. On the other hand, empirical relations that use the light-curve information to estimate [Fe/H] have been derived in several filters, ranging from optical V filter to infrared WISE filters (some examples can be found in Section 2). Higherprecision photometric metallicity can be achieved by averaging out the [Fe/H] obtained from several such relations in the same or different filters mitigating possible systematic effects. In this

Original content from this work may be used under the terms ۲ (cc) of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOL

work, we demonstrate this is indeed the case based on the multiband observations of two ab-type (i.e., fundamentalmode) RR Lyrae discovered in the ultrafaint dwarf galaxies SEGUE II (Boettcher et al. 2013) and Ursa Major II (hereafter UMaII; Dall'Ora et al. 2012). These near-simultaneous timeseries observations were carried out using the Lulin One-meter Telescope (LOT),³ a general-purpose Cassegrain reflector located at the Lulin Observatory in central Taiwan. The collected data allow us to obtain the photometric metallicities for these two RR Lyrae based on the homogeneous light-curve data at multiple wavelengths.

Section 2 presents multiband light curves collected from LOT, together with archival Gaia light curves, for these two RR Lyrae. Based on these multiband light curves, we obtained their photometric metallicity in Section 3. A by-product of our work is the derivation of distance moduli to these dwarf galaxies, which will be discussed in Section 4. The conclusions of our work is presented in Section 5. Throughout this work, these two RR Lyrae will be referred as SEGUE II-V1 and UMaII-V1, respectively.

2. Multiband Light Curves

Time-series observations of SEGUE II-V1 and UMaII-V1 were carried out with LOT in 12 and 18 nights, respectively, between 2019 November 14 and 2020 April 15. The Princeton Instruments SOPHIA 2048B back-illuminated CCD was mounted on LOT during these observations, providing a FOV of $13! 2 \times 13!' 2$ (with a pixel scale of $0!'.386 \text{ pixel}^{-1}$) on the CCD images. A sequence of Vgri exposures, with identical

³ We note that Vivas et al. (2020) discovered three additional RR Lyrae associated with UMAII. However, these three RR Lyrae were located outside the field of view (FOV) for LOT. In contrast, no additional RR Lyrae were found for SEGUE II (Vivas et al. 2020).

THE ASTRONOMICAL JOURNAL, 168:8 (8pp), 2024 July © 2024. The Author(s). Published by the American Astronomical Society. OPEN ACCESS

https://doi.org/10.3847/1538-3881/ad49a9

Discovery of RR Lyrae in the Ultra-faint-dwarf Galaxy Virgo III

Chow-Choong Ngeow¹ and Anupam Bhardwaj² Inter-University Center for Astronomy and Astrophysics (IUCAA), Post Bag 4, Ganeshkhind, Pune 411 007, India Received 2024 April 10; revised 2024 May 8; accepted 2024 May 8; published 2024 June 10

Abstract

Virgo III is a newly discovered ultra-faint-dwarf (UFD) candidate, and finding RR Lyrae associated with this galaxy is important to constrain its distance. In this work, we present a search of RR Lyrae in the vicinity of Virgo III based on the time-series r-band images taken from the Lulin One-meter Telescope (LOT). We have identified three RR Lyrae from our LOT data, including two fundamental mode (ab-type) and a first-overtone (c-type) RR Lyrae. Assuming these three RR Lyrae are members of Virgo III, we derived the distance to this UFD as 154 ± 25 kpc, fully consistent with the independent measurements given in the literature. We have also revisited the relation between absolute V-band magnitude (M_V) and the number of RR Lyrae (of all types, N_{RRL}) found in local galaxies, demonstrating that the $M_V N_{RRL}$ relation is better described with the specific RR Lyrae frequency.

Unified Astronomy Thesaurus concepts: RR Lyrae variable stars (1410); Dwarf galaxies (416)

1. Introduction

Finding RR Lyrae in dwarf galaxies, especially the ultrafaint dwarfs (UFDs; for a recent review, see Simon 2019), is particularly interesting (Sesar et al. 2014; Baker & Willman 2015). This is because RR Lyrae are well-known standard candles, therefore distances measured from RR Lyrae can be used to constrain the properties of their host UFD. Recently, Homma et al. (2023) reported the discovery of Virgo III as a candidate UFD. Based on the empirical relation derived in Martínez-Vázquez et al. (2019), and using the integrated Vband absolute magnitude (M_V) given in (Homma et al. 2023; with $M_V = -2.69^{+0.45}_{-0.56}$ mag), the "expected" number of RR Lyrae (N_{RRL}) in Virgo III is 1 ± 1 . Boötes II and Willman 1 have $M_V = -2.9$ mag and -2.5 mag, respectively, bracketing Virgo III. Yet Boötes II has one RR Lyrae and Willman 1 has none (Tau et al. 2024). Therefore, Virgo III could have (at least) one RR Lyrae or none, and it is useful to search and identify these variables in Virgo III.

In this work, we present our search for potential RR Lyrae in the vicinity of Virgo III using the Lulin One-meter Telescope (LOT), located at the central Taiwan. We first describe our time-series observations carried out at LOT, as well as the image reduction and photometric calibration, in Section 2. We then create a set of simulated light curves to evaluate the feasibility of detecting RR Lyrae based on the characteristics of our LOT observations, and search for potential RR Lyrae using the calibrated light curves in Sections 3 and 4, respectively. In Section 5 we present our detected RR Lyrae, and revisit the $M_V - N_{\rm RRL}$ relation in Section 6. We concluded our work in Section 7.

2. LOT Observations, Reduction, and Calibration

LOT is a F/8 Cassegrain reflector, and it was equipped with the Andor iKon-L 936 CCD imager during our queued observations. As a result, the LOT images have a pixel scale

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

of 0.345" pixel⁻¹ and a field of view (FOV) of $11.8' \times 11.8'$. Note that the half-light radius for Virgo III is $r_h = 1'$ (Homma et al. 2023), therefore the FOV of LOT can cover the entire galaxy. Given the expected faintness of the RR Lyrae ($r \sim$ 21.5 mag), we only observed Virgo III using the r-band filter commercially available from Astrodon, with exposure time of 1200 s (except the first two nights in 2023, when the exposure time was set to 900 s). A log of our time-series observations is given in Table 1.

All of the collected images were bias subtracted and dark subtracted using the master-bias and master-dark frames acquired from the same night, followed by flat fielding using either dome flat or twilight flat images. Astrometric calibration on the reduced images were done using the SCAMP (Bertin 2006) software. For photometric calibration, we selected ~20 reference stars from the Pan-STARRS1 (PS1) photometric catalog (Chambers et al. 2016; Flewelling et al. 2020). Criteria for selecting the PS1 reference stars (whenever applicable) were same as in Ngeow (2022) and Ngeow & Bhardwaj (2024), and hence will not be repeated here. The rband magnitudes and colors of the PS1 reference stars, r^{PS1} and $(g-r)^{PS1}$, respectively, were then used to iteratively fit the , respectively, were then used to iteratively fit the regression in the following form:

$$r^{PS1} - r^{\text{instr}} = ZP + C(g - r)^{PS1}.$$
 (1)

The instrumental magnitudes of the reference stars, r^{instr} on each images, were based on the point-spread-function (PSF) photometry measured from using the Source-Extractor (Bertin & Arnouts 1996) and PSFEx (Bertin 2011) package. After solving Equation (1), the detected sources in each images were calibrated to the PS1 AB magnitude system. We then fitted a low-order polynomial to the calibrated r versus σ_r plot, and estimated the 5σ limiting magnitude from the fitted polynomial (these fitted polynomials would be used in the light-curve simulations as described in Section 3). They are listed in the last column of Table 1, and most of the images can reach to a nominal depth of $r \sim 23$ mag. We have also estimated the expected photometric error at r = 21.5 mag, which has a median of ~ 0.05 mag.

A&A, 686, A228 (2024) https://doi.org/10.1051/0004-6361/202449647 © The Authors 2024

Optical variability of the blazar 3C 371: From minute to year timescales

J. Otero-Santos^{1,2}, C. M. Raiteri³, J. A. Acosta-Pulido^{2,4}, M. I. Carnerero³, M. Villata³, S. S. Savchenko^{5,6,7}, D. Carosati^{8,9}, W. P. Chen¹⁰, S. O. Kurtanidze¹¹, M. D. Joner¹², E. Semkov¹³,

T. Pursimo^{14,15}, E. Benítez¹⁶, G. Damljanovic¹⁷, G. Apolonio¹², G. A. Borman¹⁸, V. Bozhilov¹⁹,

F. J. Galindo-Guil²⁰, T. S. Grishina⁵, V. A. Hagen-Thorn⁵, D. Hiriart²¹, H. Y. Hsiao¹⁰, S. Ibryamov²²,

R. Z. Ivanidze¹¹, G. N. Kimeridze¹¹, E. N. Kopatskaya⁵, O. M. Kurtanidze^{11,23}, V. M. Larionov⁵,

E. G. Larionova⁵, L. V. Larionova⁵, M. Minev^{19,13}, D. A. Morozova⁵, M. G. Nikolashvili¹¹, E. Ovcharov¹⁹,

L. A. Sigua¹¹⁽⁰⁾, M. Stojanovic¹⁷⁽⁰⁾, I. S. Troitskiy⁵⁽⁰⁾, Yu. V. Troitskaya⁵⁽⁰⁾, A. Tsai^{10,24}⁽⁰⁾, A. Valcheva¹⁹⁽⁰⁾,

A. A. Vasilyev⁵, O. Vince¹⁷, E. Zaharieva¹⁹, and A. V. Zhovtan¹⁸

(Affiliations can be found after the references)

Received 17 February 2024 / Accepted 22 March 2024

ABSTRACT

Context. The BL Lac object 3C 371 was observed by the Transiting Exoplanet Survey Satellite (TESS) for approximately a year, between July 2019 and July 2020, with an unmatched two-minute imaging cadence. In parallel, the Whole Earth Blazar Telescope (WEBT) Collaboration organized an extensive observing campaign, providing three years of continuous optical monitoring between 2018 and 2020. These datasets allow for a thorough investigation of the variability of the source.

Aims. The goal of this study is to evaluate the optical variability of 3C 371. Taking advantage of the remarkable cadence of TESS data, we aim to characterize the intra-day variability (IDV) displayed by the source and identify its shortest variability timescale. With this estimate, constraints on the size of the emitting region and black hole mass can be calculated. Moreover, WEBT data are used to investigate long-term variability (LTV), including in terms of the spectral behavior of the source and the polarization variability. Based on the derived characteristics, we aim to extract information on the origin of the variability on different timescales.

Methods. We evaluated the variability of 3C 371 by applying the variability amplitude tool, which quantifies variability of the emission. Moreover, we employed common tools, such as ANOVA (ANalysis Of VAariance) tests, wavelet and power spectral density (PSD) analyses to characterize the shortest variability timescales present in the emission and the underlying noise affecting the data. We evaluated the short- and long-term color behavior to understand its spectral behavior. The polarized emission was analyzed, studying its variability and possible rotation patterns of the electric vector position angle (EVPA). Flux distributions of the IDV and LTV were also studied with the aim being to link the flux variations to turbulent and/or accretion-disk-related processes.

Results. Our ANOVA and wavelet analyses reveal several entangled variability timescales. We observe a clear increase in the variability amplitude with increasing width of the time intervals evaluated. We are also able to resolve significant variations on timescales of as little as ~0.5 h. The PSD analysis reveals a red-noise spectrum with a break at IDV timescales. The spectral analysis shows a mild bluer-when-brighter (BWB) trend on long timescales. On short timescales, mixed BWB, achromatic and redder-when-brighter signatures can be observed. The polarized emission shows an interesting slow EVPA rotation during the flaring period, where a simple stochastic model can be excluded as the origin with a 3σ significance. The flux distributions show a preference for a Gaussian model for the IDV, and suggest it may be linked to turbulent processes, while the LTV is better represented by a log-normal distribution and may have a disk-related origin.

Key words. galaxies: active - BL Lacertae objects: general - BL Lacertae objects: individual: 3C 371 - galaxies: jets - galaxies: nuclei

1. Introduction

Blazars, a subtype of radio-loud active galactic nuclei (AGN), develop relativistic jets that are closely aligned with the line of sight, which leads to a relativistic boosting of their emission. They can be divided into BL Lacertae (BL Lac) objects and flat-spectrum radio quasars (FSRQs) depending on the properties of their optical spectrum (Urry & Padovani 1995). BL Lacs typically present an (almost) featureless optical spectrum, while FSRQs show broad emission lines with an equivalent width |EW| > 5 Å in their rest frame (Stickel et al. 1991). Their broadband emission is mainly non thermal, is associated to the relativistic jet, and can extend from radio frequencies up to γ -ray energies. Their spectral energy distribution (SED) shows a typical double-bump structure (see e.g., Abdo et al. 2010). The lowenergy bump is produced by synchrotron radiation of the electrons moving under the influence of the magnetic field of the jet (see e.g., Konigl 1981). The high-energy bump is commonly modeled through inverse Compton (IC) scattering of low-energy photons with the same population of relativistic electrons, that is, within the leptonic interpretation. This can happen with the same low-energy photons of the synchrotron radiation through synchrotron self-Compton scattering (SSC; see Maraschi et al. 1992), or with low-energy photons from outside the jet - if there is an external injection of photons - through external Compton scattering (EC; see Dermer & Schlickeiser 1993). While this is the commonly adopted explanation, hadronic models have also been used in recent years (see e.g., Cerruti et al. 2015).

Variability is a key signature of the blazar emission. This variability is present in their broadband emission, manifesting on

A228, page 1 of 19

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.

Otero-Santos, J., et al.: A&A, 686, A228 (2024)

Table 2. WEBT observatories supporting the observing campaign of 3C 371 in the optical BVRI bands.

Observatory	Country	Telescope size (cm)	Band	Ν	Symbol	Color
Abastumani	Georgia	70	R	253	\diamond	Dark green
Crimean ^(a)	Crimea	70	BVRI	377	×	Magenta
Hans Haffner	Germany	50	VR	16	0	Red
Lulin	Taiwan	40	R	371	X	Blue
Roque (NOT)	Spain	260	BVRI	29	+	Green
Rozhen	Bulgaria	200	BVRI	12		Red
Rozhen	Bulgaria	50/70	BVRI	91	\diamond	Orange
San Pedro Martir ^(a)	Mexico	84	R	28	0	Black
St. Petersburg ^(a)	Russia	40	BVRI	198	+	Orange
Teide (IAC80)	Spain	80	BVRI	119	*	Green
Teide (STELLA-I)	Spain	120	R	84	+	Violet
Tijarafe	Spain	40	R	466	*	Red
Vidojevica ^(b)	Serbia	60	BVRI	18	Δ	Black
West Mountain	US	91	V	112	Δ	Magenta

Notes. The telescope size is reported (cm), together with the total number of observations provided, and the symbols and colors used in the light-curve plots. ^(a)Telescopes with polarimetric instrumentation available. ^(b)Astronomical Station Vidojevica.

Fig. 2. Finding chart obtained from the PanSTARRS-1 (PS1) Image Cutout Service (http://pslimages.stsci.edu/cgi-bin/ pslcutouts) in *r* band. The field of view is 8×8 arcmin. Stars 1–5 represent the photometric sequence of Xilouris et al. (2006) recalibrated by us (see Table 3).

Sect. 2.2, we calculated the intrinsic polarization degree as

$$P_{\text{jet}}\left[\%\right] = \frac{P_{\text{obs}}\left[\%\right]}{1 - \frac{F_{\text{hoss}}}{F_{\text{real}}}},\tag{1}$$

where P_{jet} and P_{obs} correspond to the intrinsic and observed polarization fractions, F_{total} is the total brightness of the source and F_{host} is the contribution of the host galaxy. This intrinsic polarization degree is also represented in Fig. 4. We note that no bias correction was applied here to the polarization to account for the difference between the Rice and Gaussian distributions, as discussed by Blinov et al. (2021). Further discussion and analysis of the behavior of the polarization degree and EVPA of 3C 371 during this period is presented in Sect. 6.

A228, page 4 of 19

Table 3. Standard *BVRI* magnitudes (and their uncertainties) of the reference stars in the field of view of 3C 371 (see Fig. 2).

Star	В	V	R	Ι
1	14.97 (0.03)	14.25 (0.02)	13.79 (0.03)	13.41 (0.01)
2	15.16 (0.02)	14.61 (0.03)	14.25 (0.04)	13.94 (0.01)
3	16.05 (0.05)	15.49 (0.04)	15.13 (0.04)	14.81 (0.02)
4	16.70 (0.05)	16.00 (0.05)	15.54 (0.05)	15.14 (0.02)
5	15.88 (0.02)	15.15 (0.03)	14.69 (0.03)	14.28 (0.01)

 Table 4. Contribution of the host galaxy to the total observed flux in the different optical bands.

Band	$\lambda_{\rm eff}$ [Å]	Observed contained flux [mJy]	Dereddened contained flux [mJy]
Ι	7980	4.260	4.465
R	6410	2.901	3.106
V	5450	1.958	2.133
В	4380	0.815	0.912

3. Intra-day variability

Several blazars in the past have shown signatures of IDV (see e.g., Wagner & Witzel 1995; Villata et al. 2002; Raiteri et al. 2008, 2021a,b; Gupta et al. 2008; Gaur et al. 2015). In particular for 3C 371, Xilouris et al. (2006) have investigated the presence of IDV features in this source. Here, we take advantage of the extended temporal coverage provided by the TESS satellite for 3C 371 with a 2 min cadence to evaluate the possible IDV present in this BL Lac object. For this analysis we use the *R*-band calibrated light curve after Galactic extinction correction and host galaxy subtraction.

3.1. Variability amplitude and timescales

Several episodes of noticeable IDV in the R-band emission of 3C 371 are observed over the period monitored by TESS in

THE ASTROPHYSICAL JOURNAL, 960:29 (28pp), 2024 January 1 © 2023. The Author(s). Published by the American Astronomical Society. OPEN ACCESS https://doi.org/10.3847/1538-4357/ad0153

Strong Carbon Features and a Red Early Color in the Underluminous Type Ia SN 2022xkq

Jeniveve Pearson¹⁽⁰⁾, David J. Sand¹⁽⁰⁾, Peter Lundqvist²⁽⁰⁾, Lluís Galbany^{3,4}⁽⁰⁾, Jennifer E. Andrews⁵⁽⁰⁾, K. Azalee Bostroem^{1,52}, Yize Dong ($\overline{\Xi} \rightarrow \overline{F}$)⁶, Emily Hoang⁶, Griffin Hosseinzadeh¹, Daryl Janzen⁷, Jacob E. Jencson⁸, Michael J. Lundquist⁹, Darshana Mehta⁶, Nicolás Meza Retamal⁶, Manisha Shrestha¹, Stefano Valenti⁶¹⁰, Samuel Wyatt¹⁰¹⁰, Joseph P. Anderson^{11,12}¹⁰, Chris Ashall¹³¹⁰, Katie Auchettl^{14,15}¹⁰, Eddie Baron^{16,17,18}¹⁰, Stefano Valenti[®], Samuel Wyatt^{®®}, Joseph P. Anderson^{*}^{M®®}, Chris Ashall⁹, Katie Auchett^{1*40*®}, Eddie Baron^{**M®®}, Stéphane Blondin¹⁹®, Christopher R. Burns²⁰®, Yongzhi Cai (蔡永志)^{21,22,23}®, Ting-Wan Chen²⁴®, Laura Chomiuk²⁵®, David A. Coulter¹⁵®, Dane Cross³, Kyle W. Davis¹⁵®, Thomas de Jaeger²⁶®, James M. DerKacy¹³®, Dhvanil D. Desai²⁷®, Georgios Dimitriadis²⁸®, Aaron Do²⁷®, Joseph R. Farah²⁹®, Ryan J. Foley¹⁵®, Mariusz Gromadzki³⁰®, Claudia P. Gutiérrez^{3,4}®, Joshua Haislip³¹®, Jonay I. González Hernández^{32,33}®, Jason T. Hinkle²⁷®, Willem B. Hoogendam^{27,53}®, D. Andrew Howell^{29,34}®, Peter Hoeflich³⁵®, Eric Hsiao³⁵®, Mark E. Huber²⁷®, ³⁸® Saurabh W. Jha³⁶, Cristina Jiménez Palau^{3,4}, Charles D. Kilpatrick³⁷, Vladimir Kouprianov³¹, Sahana Kumar³⁸, Satiabit W. Jia C, Chaina Jinehez Paiau C, Charles D. Khparick C, Vladinin Kouphanov C, Sahala Kuna C, Lindsey A. Kwok³⁶, Conor Larison³⁶, Natalie LeBaron³⁹, Xavier Le Saux¹⁵, Jing Lu²⁵, Curtis McCully^{29,34}, Tycho Mera Evans³⁵, Peter Milne¹, Maryam Modjaz³⁸, Nidia Morrell⁴⁰, Tomás E. Müller-Bravo^{3,4}, Megan Newsome^{29,34}, Matt Nicholl⁴¹, Estefania Padilla Gonzalez^{29,34}, Anna V. Payne^{27,42}, Craig Pellegrino^{34,38}, Craig Pellegrino^{34,38}, Craig Pellegrino^{34,38}, The Satisfania Padilla Gonzalez^{29,34}, Anna V. Payne^{27,42}, Craig Pellegrino^{34,38}, Megan Newsome^{21,0}, Matt Nicholl ⁴⁰, Estefania Padilla Gonzalez^{20,0}, Anna V. Payne^{41,0}, Craig Pellegrino^{11,0}, Kim Phan^{3,4}, Jonathan Pineda-García⁴³, Anthony L. Piro²⁰, Lara Piscarreta³, Abigail Polin^{20,44}, Daniel E. Reichart³¹, César Rojas-Bravo¹⁵, Stuart D. Ryder^{45,46}, Irene Salmaso^{47,48}, Michaela Schwab³⁶, Melissa Shahbandeh^{8,42}, Senjamin J. Shappee²⁷, Matthew R. Siebert⁴², Nathan Smith¹, Jay Strader²⁵, Kirsty Taggart¹⁵, Giacomo Terreran³⁴, Samaporn Tinyanont⁴⁹, M. A. Tucker^{50,51,54}, Giorgio Valerin^{47,48}, and D. R. Young⁴¹, Samaporn Tinyanont⁴⁹, M. A. Tucker^{50,51,54}, Giorgio Valerin^{47,48}, and D. R. Young⁴¹, ¹Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA; jenivevepearson@arizona.edu Oskar Klein Centre, Department of Astronomy, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden ³ Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain ³ Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain
 ⁴ Institut d'Estudis Espacials de Catalunya, Gran Capità, 2-4, Edifci Nexus, Desp. 201, E-08034 Barcelona, Spain
 ⁵ Gemini Observatory, 670 North A'ohoku Place, Hilo, HI 96720-2700, USA
 ⁶ Department of Physics and Astronomy, University of California, Davis, 1 Shields Avenue, Davis, CA 95616-5270, USA
 ⁷ Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
 ⁸ W. M. Keck Observatory, 65-1120 Mämalahoa Highway, Kamuela, HI 96743-8431, USA
 ¹⁰ Department of Actomacy University of Washington, 3910 15th Avenue, NE Seattle, WA 98195-0002, USA ¹⁰ Department of Astronomy, University of Washington, 3910 15th Avenue NE, Seattle, WA 98195-0002, USA ¹¹ European Southern Observatory, Alonso de Córdova 3107, Casilla 19, Santiago, Chile ¹² Millennium Institute of Astrophysics MAS, Nuncio Monsenor Sotero Sanz 100, Off. 104, Providencia, Santiago, Chile ¹³ Department of Physics, Virginia Tech, 850 West Campus Drive, Blacksburg, VA 24061, USA
 ¹⁴ School of Physics, The University of Melbourne, Parkville, VIC 3010, Australia
 ¹⁵ Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064-1077, USA
 ¹⁶ Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ 85719-2395, USA
 ¹⁷ Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany ¹⁸ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks, Norman, OK 73019-2061, USA Aix-Marseille Univ, CNRS, CNES, LAM, F-13388 Marseille, France ²⁰ Observatories of the Carnegie Institute for Science, 813 Santa Barbara Street, Pasadena, CA 91101-1232, USA ²⁰ Observatories of the Carnegie Institute for Science, 813 Santa Barbara Street, Pasadena, CA 91101-1232, USA
 ²¹ Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, People's Republic of China
 ²² Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650216, People's Republic of China
 ²³ International Centre of Supernovae, Yunnan Key Laboratory, Kunming 650216, People's Republic of China
 ²⁴ Graduate Institute of Astronomy, National Central University, 300 Jhongda Road, 32001 Jhongli, Taiwan
 ²⁵ Center for Data Intensive and Time Domain Astronomy, Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
 ²⁶ LPNHE, (CNRS/IN2P3, Sorbonne Université, Université Paris Cité), Laboratorie de Physique Nucléaire et de Hautes Energies, F-75005, Paris, France
 ²⁷ Institute for Astronomy. University of Hawai'i 2680 Woodlawn Drive, Honolulu HI 96822-1830 USA Institute for Astronomy, University of Hawai'i, 2680 Woodlawn Drive, Honolulu, HI 96822-1839, USA 28 School of Physics, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland ²⁹ Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA ⁴⁷ Department of Physics, University of California, Santa Barbara, CA 93100-9350, USA
 ³⁰ Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warsawa, Poland
 ³¹ Department of Physics and Astronomy, University of North Carolina, 120 East Cameron Avenue, Chapel Hill, NC 27599, USA
 ³¹ Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain
 ³³ Universidad de La Laguna, Dept. Astrofísica, E-38206 La Laguna, Tenerife, Spain
 ³⁴ Las Cumbres Observatory, 6740 Cortona Drive, Suite 102, Goleta, CA 93117-5575, USA
 ³⁵ Department of Physics. Florida State University 77 Chieffan Wav. Tallahassee, FL 32306-4350, USA ³⁵ Department of Physics, Florida State University, 77 Chieffan Way, Tallahasee, FL 32306-4350, USA
 ³⁶ Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA
 ³⁷ Center for Interdisciplinary Exploration and Research in Astrophysics and Department of Physics and Astronomy, Northwestern University, 1800 Sherman Avenue, 8th Floor, Evanston, IL 60201, USA ³⁸ Department of Astronomy, University of Virginia, Charlottesville, VA 22904, USA ³⁹ Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA ⁴⁰ Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena, Chile ⁴¹ Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, UK Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218-2410, USA ⁴³ Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Fernández Concha 700, Las Condes, Santiago, Chile ⁴⁴ Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Mail Code 249-17, Pasadena, CA 91125, USA ⁴⁵ School of Mathematical and Division Sciences Macquaria University NSW 2100 Australia ⁴⁵ School of Mathematical and Division Sciences Macquaria University NSW 2100 Australia School of Mathematical and Physical Sciences, Macquarie University, NSW 2109, Australia ⁴⁶ Astronomy, Astrophysics and Astrophotonics Research Centre, Macquarie University, Sydney, NSW 2109, Australia

8

Figure 2. SN 2022xkq light curves from DLT40 (stars), Las Cumbres Observatory (circles), SLT (side-up hexagons), Swift (pentagons), Swope (plus signs), and TJO (vertex-up hexagons). NIR photometry from NTT, NOT, and CAHA is also included (quadrilaterals). Main figure: light curves with offsets in absolute and extinctioncorrected apparent magnitudes. Swift observations are plotted as nondetections when the measurement error is $>3\sigma$. Inset: zoom-in of the DLT40 light curve immediately before and after discovery without offsets. The DLT40 discovery is marked by the red star, and the last nondetection by ATLAS is marked by the yelloworange cross. Epochs of optical (blue) and infrared (red) spectra are displayed as lines along the upper *x*-axis. Phase is relative to the time of B_{max} (MJD 59879.03). (The data used to create this figure are available.)

53 days. Additionally, multiband *BVgri* photometry was taken at the Prompt5 telescope at a cadence of \sim 6 observations per day until maximum light and \sim 2 per day for the next 40 days. The *BVgri* light curves were created using aperture photometry and calibrating to the APASS (*BVgri*) catalog.

Further *UBVgri* photometry of SN 2022xkq was obtained using the Sinistro cameras on Las Cumbres Observatory's robotic 1 m telescopes (Brown et al. 2013), located at the Siding Spring Observatory, the South African Astronomical Observatory, and the Cerro Tololo Inter-American Observatory as part of the Global Supernova Project (GSP) collaboration. The photometric data from Las Cumbres Observatory were reduced using lcogtsnpipe (Valenti et al. 2016), a PyRAFbased image reduction pipeline. lcogtsnpipe utilizes a loworder polynomial fit and a standard point-spread function (PSF) fitting technique to remove the background and calculate instrumental magnitudes. Apparent magnitudes were calibrated to the APASS (*BVgri*) catalog and a Landolt (*U*) standard field that was observed on 2022 November 24 alongside observations of SN 2022zkq. We also include *BV* photometry obtained with the 0.8 m Telescopi Joan Oró (TJO) at the Montsec Observatory. Instrumental magnitudes were measured using AutoPhOT (Brennan & Fraser 2022) and calibrated to *BV* APASS tabulated magnitudes.

We also collect images with the 0.4 m Ritchey–Chrétien Super Light Telescope (SLT) at the Lulin Observatory, Taiwan, as part of the Kinder project (Chen et al. 2021), and we use Photutils (Bradley et al. 2022) to perform aperture photometry on the images.

Additionally, we include photometric observations in *gri* bands taken with the Swope 1 m optical telescope at Las Campanas Observatory, Chile, taken as part of the Swope Supernova Survey. All Swope photometry was processed using biases and flat fields in the same instrumental configuration as described in Kilpatrick et al. (2018), using the photpipe imaging and photometry package (Rest et al. 2005), including bias subtraction, flat-fielding, image stitching, and photometric calibration. Observations were calibrated using standard sources from the Pan-STARRS DR1 catalog (Flewelling et al. 2020).

A&A, 682, A114 (2024) https://doi.org/10.1051/0004-6361/202347845 © The Authors 2024

Astronomy Astrophysics

Multi-year characterisation of the broad-band emission from the intermittent extreme BL Lac 1ES 2344+514

MAGIC Collaboration: H. Abe¹, S. Abe¹, V. A. Acciari², I. Agudo³, T. Aniello⁴, S. Ansoldi^{5,42}, L. A. Antonelli⁴, A. Arbet Engels^{6, *}, C. Arcaro⁷, M. Artero⁸, K. Asano¹, D. Baack⁹, A. Babić¹⁰, A. Baquero¹¹, U. Barres de Almeida¹², I. Batković⁷, J. Baxter¹, J. Becerra González², E. Bernardini⁷, J. Bernete¹³, A. Berti⁶, J. Besenrieder⁶, C. Bigongiari⁴, A. Biland¹⁴, O. Blanch⁸, G. Bonnoli⁴, Ž. Bošnjak¹⁰, I. Burelli⁵, G. Busetto⁷, A. Campoy-Ordaz¹⁵, A. Carosi⁴, R. Carosi¹⁶, A. Bhahd, 'O. Bahch, 'O. Bohnon, Z. Boshjak, 'I. Bureni, 'G. Busetto, 'A. Campoy-Oldaz, 'A. Carlosi, 'K. Carlosi, 'A. Carl A. Del Popolo¹⁹, M. Delfino^{6,44}, J. Delgado^{8,44}, C. Delgado Mendez¹⁹, D. Depaol¹²⁰, F. Di Pierro²⁰, L. Di Venere²¹,
 D. Dominis Prester²², D. Dorner¹⁴, M. Doro⁷, D. Elsaesser⁹, G. Emery²³, J. Escudero³, L. Fariña⁸, A. Fattorini⁹, L. Foffano⁴,
 L. Font¹⁵, S. Fukami^{14,*}, Y. Fukazawa²⁴, R. J. García López², S. Gasparyan²⁵, M. Gaug¹⁵, J. G. Giesbrecht Paiva¹²,
 N. Giglietto²¹, F. Giordano²¹, P. Gliwny²⁶, R. Grau⁸, J. G. Green⁶, D. Hadasch¹, A. Hahn⁶, L. Heckmann^{6,45}, J. Herrera²,
 D. Hrupec²⁷, M. Hütten¹, R. Imazawa²⁴, T. Inada¹, R. Iotov²⁸, K. Ishio²⁶, I. Jiménez Martínez¹³, J. Jormanainen²⁹,
 D. Kerszberg⁸, G. W. Klugel^{8,46}, Y. Kobayashi¹, P. M. Kouch²⁹, H. Kubo¹, J. Kushida³⁰, M. Láinez Lezáun¹¹, A. Lamastra⁴,
 F. Lcone⁴, E. Lindfors²⁹, L. Linhoff⁹, S. Lombardi⁴, F. Longo^{5,47}, M. López-Moya¹¹, A. López-Oramas², S. Loporchio²¹,
 A. Lorini³¹, B. Machado de Oliveira Fraga¹², P. Majumdar³², M. Makariev³³, G. Maneva³³, N. Mang⁹, M. Manganaro²²,
 M. Mariotti⁷, M. Martínez⁸, M. Martínez-Chicharro¹³, A. Mas-Aguilar¹¹, D. Mazin^{1,48}, S. Menchiari³¹, S. Mende⁹, D. Miceli⁷,
 T. Miener¹¹, J. M. Miranda³¹, R. Mirzoyan⁶, M. Molero González², E. Molina², H. A. Mondal^{32,*}, A. Moralejo⁸,
 D. Morcuende¹¹, T. Nakamori³⁴, C. Nauci⁴, V. Neustroev³⁵, C. Nigro⁸, L. Nikolić³¹, K. Nishijima³⁰, T. Njoh Ekoume²,
 K. Noda³⁶, S. Nozaki⁶, Y. Ohtani¹, A. Okumura³⁷, J. Otero-Santos⁸, S. Paiano⁴, M. Patitello⁵, D. Paneque⁶, R. Paoletti³¹,
 J. M. Paredes¹⁷, D. Pavlović²², M. Persic^{5,49}, M. Pihet⁷, G. Pirola⁶, F. Podobnik³¹, P. G. Prada Moroni¹⁶, E. Prandini⁷,
 G. Saturni⁴, B. Schleicher²⁸, K. Schmid⁶, F. Schmuckermaief⁶, J. L. Schweir⁴, T. Saito¹, K. Staacaluga⁴, J D. Dominis Prester²², D. Dorner¹⁴, M. Doro⁷, D. Elsaesser⁹, G. Emery²³, J. Escudero³, L. Fariña⁸, A. Fattorini⁹, L. Foffano⁴,

(Affiliations can be found after the references)

Received 31 August 2023 / Accepted 28 September 2023

ABSTRACT

Aims. The BL Lac 1ES 2344+514 is known for temporary extreme properties characterised by a shift of the synchrotron spectral energy distribution (SED) peak energy $v_{synch,p}$ above 1 keV. While those extreme states have only been observed during high flux levels thus far, additional multi-year observing campaigns are required to achieve a coherent picture. Here, we report the longest investigation of the source from radio to very high energy (VHE) performed so far, focussing on a systematic characterisation of the intermittent extreme states.

Methods. We organised a monitoring campaign covering a 3-year period from 2019 to 2021. More than ten instruments participated in the observations in order to cover the emission from radio to VHE. In particular, sensitive X-ray measurements by XMM-Newton, NuSTAR, and AstroSat took place simultaneously with multi-hour MAGIC observations, providing an unprecedented constraint of the two SED components for this blazar.

Similar costs of the campaign. It unveils complexity in the spectral evolution, where the common harder-when-brighter trend observed in BL Lacs is violated. By combining *Swift*-XRT and *Swift*-UVOT measurements during a low and hard X-ray state, we find an excess of the UV flux with respect to an extrapolation of the X-ray spectrum to lower energies. This UV excess implies that at least two regions significantly contribute to the infrared/optical/ultraviolet/X-ray emission. Using the simultaneous MAGIC, *XMM-Newton*, *NuSTAR*, and AstroSat observations, we argue that a region possibly associated with the 10 GHz radio core may explain such an excess. Finally, we investigate a VHE flare, showing an absence of simultaneous variability in the 0.3-2 keV band. Using time-dependent leptonic modelling, we show that this behaviour, in contradiction to single-zone scenarios, can instead be explained by a two-component model.

Key words. radiation mechanisms: non-thermal – galaxies: active – BL Lacertae objects: individual: 1ES 2344+514

Corresponding authors: A. Arbet Engels, H. A. Mondal, S. Fukami, and F. D'Ammando; e-mail: contact.magic@mpp.mpg.de

A114, page 1 of 26

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This article is published in open access under the Subscribe to Open model. Open access funding provided by Max Planck Society

(MJD 59458). The data were acquired by the Kungliga Vetenskapsakademien (KVA; 35 cm primary mirror diameter) telescope and *Joan Oró* Telescope (TJO; 80 cm primary mirror diameter). The KVA is located on the island of La Palma, in Spain, at the Roque de los Muchachos Observatory, while the TJO telescope is placed at the Montsec Astronomical Observatory, also in Spain. Data reduction is performed following the differential photometry method described by Nilsson et al. (2018) with an aperture radius of 7.5". The contributions of the host galaxy and nearby companions are subtracted from the observed fluxes, and we apply a correction for the Galactic extinction.

Additional *R*-band observations were performed by the Whole Earth Blazar Telescope⁹ (WEBT; e.g. Villata et al. 2007; Raiteri et al. 2017) consortium. The observations were made within the GLAST-AGILE Support Program (GASP; e.g. Villata et al. 2009), which provides mainly optical, but also radio and near-IR support to blazar observations by gamma-ray satellites. Optical data for this paper are taken at the Abastumani, Athens, Crimean¹⁰, Haleakala, Lulin, McDonald, Perkins, Rozhen, Skinakas, St. Petersburg, Teide, Tijarafe, and Vidojevica Observatories. The *R*-band flux densities of the source are corrected for a quantity accounting for the contribution by the host galaxy and nearby companions, the Galactic extinction, and intercalibration among the different datasets. For the latter, we use the data by the Tuorla blazar monitoring programme as a reference.

Finally, we also make use of *R*-band observations from the 0.76 m *Katzman* Automatic Imaging Telescope (KAIT; Filippenko et al. 2001) at Lick Observatory on Mt. Hamilton, CA, USA. The data are first reduced adopting the custom pipeline presented by Ganeshalingam et al. (2010). Then, the photometry is carried out using a 9-pixel aperture (corresponding to 7.2"). Several nearby stars are chosen from the Pan-STARRS1¹¹ catalogue for calibration, and their magnitudes are transformed into the Landolt (1983, 1990) system using the empirical prescription presented by Tonry et al. (2012), Eq. (6). Data from KAIT are corrected for Galactic extinction, and the contribution of the host galaxy (plus nearby companions) is subtracted with the procedure described above.

2.10. OVRO

The radio observations were performed by the Owens Valley Radio Observatory (OVRO) 40 m telescope within the blazar monitoring programme (Richards et al. 2011). OVRO employs an off-axis dual-beam optics and a cryogenic pseudo-correlation receiver with a 15 GHz centre frequency and 3 GHz bandwidth. The calibration is done using a temperature-stable diode noise source in order to remove receiver gain drifts. Finally, the flux-density scale is derived from observations of 3C 286 assuming a value of 3.44 Jy at 15.0 GHz from Baars et al. (1977). The flux-density scale has a systematic uncertainty of ~5%, which is not included in the error bars of data points shown later. More details about the OVRO data reduction and calibration are provided by Richards et al. (2011).

9 http://www.oato.inaf.it/blazars/webt/

3. Multi-wavelength light curves

In Fig. 1 the multi-wavelength light curves between December 23, 2018 (MJD 58475) and January 21, 2022 (MJD 59600) are displayed from radio to VHE. In the top panel, the MAGIC fluxes above 300 GeV are plotted with daily binning (dark markers) and yearly binning (pink markers). The horizontal grey dashed line depicts 4% of the Crab Nebula flux, which is a good approximation of the quiescent state of 1ES 2344+514 at VHE. It corresponds to the average flux level reported by Allen et al. (2017) between 2008 and 2015 when no VHE flaring activity was detected. A VHE flare is observed in August 2019 and is highlighted with a vertical blue dashed line. This flare is studied in greater detail in Sects. 3.1 and 6.3. During the rest of the campaign, no strong flare is detected at VHE. The 2020 average flux above 300 GeV is $(3.5 \pm 0.4)\%$ of the Crab Nebula, in agreement with the quiescent state. For 2021, the average flux drops to $(1.9 \pm 0.6)\%$ of that of the Crab Nebula and is one of the lowest states measured for 1ES 2344+514.

In the second panel from the top, the *Fermi*-LAT fluxes in the 0.3–300 GeV band are shown with monthly binning in darkyellow markers. Throughout the campaign the monthly fluxes fluctuate around the quiescent state of the source. The comparison of the 2019–2021 emission with the long-term behaviour can be seen in Fig. A.1, which presents a *Fermi*-LAT light curve starting from 2008. Close to the VHE flare in August 2019, the monthly emission shows little variability. However, a 2-days binned light curve simultaneous with the flare (maroon markers in Fig. 1) indicates a clear flux increase on shorter timescale (see also Sect. 3.1).

In the X-ray, the *Swift*-XRT fluxes in the 0.3–2 keV and 2–10 keV bands are binned observation-wise (with a typical exposure time around 1–2 ks) and show variability on a daily timescale. The 2–10 keV flux varies around 1 × 10^{-11} –2 × 10^{-11} erg cm⁻² s⁻¹, which is the typical dynamical range for 1ES 2344+514 in quiescent activity (Acciari et al. 2011; Aleksić et al. 2013). Nonetheless, a bright flare in the 0.3–2 keV band is visible on October 5, 2019 (MJD 58761), while the 2–10 keV flux remains at the quiescent state. This particular night appears as an outlier with respect to the other nights and is discussed in more detail in Sect. 4.1.

The two long X-ray exposures accompanying the multi-hour MAGIC observations are highlighted in Fig. 1 with vertical orange and maroon dashed lines. The first one, labelled as deep exposure 1 (on July 23, 2020), includes simultaneous *XMM*-*Newton* and *NuSTAR* pointings, and the second one, labelled as deep exposure 2 (on August 6, 2021) comprises simultaneous *XMM*-*Newton* and *AstroSat* pointings (see Table 1). The *XMM*-*Newton* and *NuSTAR* fluxes are plotted in pink and cyan colours, respectively. During these two epochs the VHE flux source is low: about 4% of the Crab Nebula for the deep exposure 1 epoch and about 2% of the Crab Nebula regarding deep exposure 2.

The organisation of multiband long exposures represents the only possibility to search for flux variations down to sub-hour scales, being the timescale over which blazars are known to vary. Such investigations are also essential to provide constraints on the source dimension based on causality arguments. Our data reveal no strong variability at VHE nor in the X-ray during both deep exposure 1 and deep exposure 2 epochs. The MAGIC fluxes are fully consistent with a constant behaviour, while the X-ray emission (in *XMM-Newton*, *NuSTAR*, or AstroSat data) varies at the level of 10% only. Nonetheless, we exploit these observations to achieve a precise spectral characterisation of the low activity of the source, which is studied in detail in Sects. 4.1 and 5.

A114, page 5 of 26

¹⁰ While the Crimean Astrophysical Observatory became Ukrainian at the time of Ukrainian independence in 1991, the AZT-8 telescope located there continued to be operated jointly by the Crimean Observatory and by the St. Petersburg group.

¹¹ http://archive.stsci.edu/panstarrs/search.php

THE ASTROPHYSICAL JOURNAL, 962:17 (18pp), 2024 February 10 © 2024. The Author(s). Published by the American Astronomical Society. OPEN ACCESS

Flight of the Bumblebee: the Early Excess Flux of Type Ia Supernova 2023bee Revealed by TESS, Swift, and Young Supernova Experiment Observations

Qinan Wang¹⁽⁰⁾, Armin Rest^{1,2}⁽⁰⁾, Georgios Dimitriadis³⁽⁰⁾, Ryan Ridden-Harper⁴⁽⁰⁾, Matthew R. Siebert²⁽⁰⁾, Mark Magee⁵⁽⁰⁾, Charlotte R. Angus⁶[®], Katie Auchettl^{7,8,9}[®], Kyle W. Davis⁷[®], Ryan J. Foley⁷[®], Ori D. Fox²[®], Sebastian Gomez²[®], Jacob E. Jencson¹[®], David O. Jones¹⁰[®], Charles D. Kilpatrick¹¹[®], Justin D. R. Pierel²[®], Anthony L. Piro¹²[®], Abigail Polit^{12,13}, Collin A. Politsch¹⁴, César Rojas-Bravo⁷, Melissa Shahbandeh^{1,2}, V. Ashley Villar^{15,16,17}, Yossef Zenati^{1,24}, C. Ashall¹⁸, Kenneth C. Chambers¹⁹, David A. Coulter⁷, Thomas de Boer¹⁹, Nico DiLullo²⁰, Christa Gall⁶, Hua Gao¹⁹, Eric Y. Hsiao²¹, Mark E. Huber¹⁹, Luca Izzo⁶, Nandita Khetan⁶, Natalie LeBaron²², Eugene A. Magnier¹⁹, Kaisey S. Mandel¹⁴, Peter McGill⁷, Hao-Yu Miao²³, Yen-Chen Pan²³, Catherine P. Stevens¹⁸, Jonathan J. Swift²⁰, Kirsty Taggart⁷, and Grace Yang²⁰, ¹ ¹Physics and Astronomy Department, Johns Hopkins University, Baltimore, MD 21218, USA; qwang75@jhu.edu ²Space Telescope Science Institute, Baltimore, MD 21218, USA ³ School of Physics, Trinity College Dublin, The University of Dublin, DD2 PN40, Ireland
 ⁴ School of Physical and Chemical Sciences | Te Kura Matū, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
 ⁵ Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK ⁶ DARK, Niels Bohr Institute, University of Watwick, Guber Inn Koar, Coveny C++ /AE, CK ⁶ DARK, Niels Bohr Institute, University of Copenhagen, Jagtvej 128, DK-2200 Copenhagen, Denmark ⁷ Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA ⁸ School of Physics, The University of Melbourne, VIC 3010, Australia ⁹ The ARC Centre of Excellence for All-Sky Astrophysics in 3 Dimension (ASTRO 3D), Australia ¹⁰ Gemini Observatory, NSF's NOIRLab, 670 N. A'ohoku Place, Hilo, HI 96720, USA ¹¹ Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60208, USA ¹² The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101, USA TAPIR, Walter Burke Institute for Theoretical Physics, 350-17, Caltech, Pasadena, CA 91125, USA ¹⁴ Institute of Astronomy and Kavli Institute for Cosmology, Madingley Road, Cambridge, CB3 0HA, UK ¹⁵ Department of Astronomy & Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA ¹⁰ Department of Astronomy & Astrophysics, The Feinsylvania state University, University Fark, PA 16802, USA
 ¹⁰ Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA
 ¹¹ Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA
 ¹⁸ Department of Physics, Virginia Tech, 850 West Campus Drive, Blacksburg VA 24061, USA ¹⁰ Department of Physics, Vignia Tech, 600 west Campus Dirty, Diaexong 1112 (1997), 101 ¹¹ Institute for Astronomy, University of Hawaii, 2660 Woodlawn Dirive, Honolulu, HI 96822, USA ²⁰ The Thacher School, 5025 Thacher Road, Ojai, CA 93023, USA ²¹ Department of Physics, Florida State University, 77 Chieftan Way, Tallahasee, FL 32306, USA ²² Department of Physics, Fioficla State University, 17 University, and Hamiltoney, 12 Section, 05A
 ²³ Department of Astronomy and Astrophysics, University of California, Berkeley, CA 94720, USA
 ²³ Graduate Institute of Astronomy, National Central University, 300 Zhongda Road, Zhongli, Taoyuan 32001, Taiwan Received 2023 May 7; revised 2023 October 16; accepted 2023 November 18; published 2024 February 1

Abstract

We present high-cadence ultraviolet through near-infrared observations of the Type Ia supernova (SN Ia) 2023bee at $D = 32 \pm 3$ Mpc, finding excess flux in the first days after explosion, particularly in our 10 minutes cadence TESS light curve and Swift UV data. Compared to a few other normal SNe Ia with early excess flux, the excess flux in SN 2023bee is redder in the UV and less luminous. We present optical spectra of SN 2023bee, including two spectra during the period where the flux excess is dominant. At this time, the spectra are similar to those of other SNe Ia but with weaker Si II, C II, and Ca II absorption lines, perhaps because the excess flux creates a stronger continuum. We compare the data to several theoretical models on the origin of early excess flux in SNe Ia. Interaction with either the companion star or close-in circumstellar material is expected to produce a faster evolution than observed. Radioactive material in the outer layers of the ejecta, either from double detonation explosion or from a ⁵⁶Ni clump near the surface, cannot fully reproduce the evolution either, likely due to the sensitivity of early UV observable to the treatment of the outer part of ejecta in simulation. We conclude that no current model can adequately explain the full set of observations. We find that a relatively large fraction of nearby, bright SNe Ia with high-cadence observations have some amount of excess flux within a few days of explosion. Considering potential asymmetric emission, the physical cause of this excess flux may be ubiquitous in normal SNe Ia.

Unified Astronomy Thesaurus concepts: Supernovae (1668); Type Ia supernovae (1728) Supporting material: data behind figures

²⁴ ISEF & De Gunzburg Fellowship.

Original content from this work may be used under the terms ((∞) of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

1. Introduction

Type Ia supernovae (SNe Ia) are traditionally believed to be the thermonucelar explosion of a white dwarf (WD) star. Their standardizeable light curves at optical wavelengths (e.g., Phillips 1993) serve as the foundation for measurements of the accelerating universe (Riess et al. 1998; Perlmutter et al. 1999) and, therefore, for the entire Λ CDM model. Despite their THE ASTROPHYSICAL JOURNAL, 962:17 (18pp), 2024 February 10

provides an extraordinary light curve with 10 minutes cadence, although there is a ~ 2 day gap around the time of first light during which the images are heavily polluted by scattered light. The complete spectroscopic and photometric coverage makes SN 2023bee one of the best-observed SNe Ia at early times, enabling a detailed study of the excess flux and its implication for progenitor properties. Hosseinzadeh et al. (2023a) presents a different set of data, including an early spectral time series and radio observations. In Section 2, we present the acquisition and reduction of our data. In Section 3, we analyze the early photometry and spectra. We present the model fits and discuss the implications in Section 4. The conclusions are presented in Section 5.

2. Observations and Data Reduction

SN 2023bee was discovered by the Distance Less Than 40 Mpc survey (DLT40; Yang et al. 2017; Tartaglia et al. 2018) on 2023 February 1 17:59:54.816 (MJD 59976.75) in the clear band with an apparent magnitude of 17.26 ± 0.04 mag (Andrews et al. 2023). SN 2023bee occurred at coordinates $\alpha = 08^{h}56^{m}11$:63, $\delta = -03^{\circ}19'32''$ 06 (J2000.0) and was spectroscopically classified as an SN Ia by Hosseinzadeh et al. (2023b). SN 2023bee is located at a distance of 93''.97 from the center of its host galaxy NGC 2708, which is an intermediate spiral galaxy at $z = 0.0067 \pm 0.0005$, and distance modulus $\mu = 32.5 \pm 0.2$ mag (Pisano et al. 2002). Given the large separation between SN 2023bee and its host, the host extinction is likely to be negligible. Throughout this paper, we use the Milky Way extinction of $E(B - V)_{MW} = 0.0145$ from the extinction map described in Schlafly & Finkbeiner (2011).

2.1. Photometry

TESS observed the rise of 2023bee during Sector 61, in CCD 1 of camera 1. TESS features a broadband filter that covers the *r*, *i*, *z*, and *y* bands with a wavelength range of 5802.57 to 11171.45 Å. We create a 90×90 pixel² target pixel file, centered on 2023bee, from the calibrated TICA (Fausnaugh et al. 2020) full frame images with TESScut. The target pixel file was reduced with the standard TESSreduce pipeline, which accounts for the image alignment, the scattered light background, and image artifacts to produce differenced images. We then conduct a secondary background subtraction by subtracting the median counts of each column from each pixel in that column, for every differenced image.

The baseline flux is estimated by the median value between MJD 59969.2 and 59974 when the background is stable, and no SN flux is present. Between MJD 59974.5 and 59976.3, the TESS measurements are significantly compromised by scattered light in the background and thus are excluded from further analysis. The complete TESS light curve along with details of the method and criteria we used to determine the compromised MJD range are described in Appendix.

We calibrate the TESS counts of SN 2023bee to physical AB magnitudes with the spectrum taken on MJD 59977.56 (see Section 2.2). This spectrum is first calibrated using the Las Cumbres Observatory (LCO) g, r, and i measurements taken at the same night. Then, we calculate a synthetic TESS magnitude, which we compare to the instrumental magnitude of the TESS measurement at the same time to compute the zero-point. For this process, we use the pyphot package (Fouesneau 2022) and the bandpasses available from the

Wang et al.

Figure 1. DECam composite griz image stamp of SN 2023bee and its host NGC 2708 taken on 2023 March 1 UT, ~10 days after peak. The location of SN 2023bee is marked by white tick marks in the upper left corner.

Spanish Virtual Observatory (Rodrigo et al. 2012; Rodrigo & Solano 2020). We find the zero-point of TESS to be $zp_{\text{TESS}} = 26.16 \pm 0.02$ mag.

We also observed SN 2023bee in griz with DECam at the CTIO 4 m Blanco telescope (DePoy et al. 2008; Flaugher et al. 2015) and the PanSTARRS1 (PS1) telescope (Chambers et al. 2016) as part of the Young Supernova Experiment (Jones et al. 2021; Aleo et al. 2023). Standard reductions for the DECam and PS1 images are performed by the NOIRLab community pipeline (Valdes et al. 2014) and the PS1 image Image Processing Pipeline, respectively (Magnier et al. 2020a, 2020b, 2020c; Waters et al. 2020). These images are then taken as input to the photpipe pipeline (Rest et al. 2005, 2014), which redetermines the zero-points by comparing DoPHOT point-spread function (PSF) photometry from each image to the Pan-STARRS Data Release 1 (DR1) catalog (Flewelling et al. 2020), convolves and subtracts a template image from the survey image, and performs forced photometry on the resulting difference images to create SN light curves. Figure 1 shows a DECam griz color image taken on 2023 March 1 UT.

We observed SN 2023bee with the LCO 1 m telescope network in *uBVgriz* bands, the 1 m telescope at Lulin Observatory using the Lulin Compact Imager, and with the Thacher 0.7 m telescope in Ojai, CA from 2023 February 2 to March 11 in the *griz* bands (Swift et al. 2022). Using the photpipe imaging and reduction pipeline (Rest et al. 2005, 2014), we performed bad-pixel masking, reprojecting the data to a common pixel scale and pointing center using SWarp (Bertin 2010), photometry with DoPhot (Schechter et al. 1993), and photometric calibration using the PanTHE ASTROPHYSICAL JOURNAL LETTERS, 969:L14 (12pp), 2024 July 1 © 2024. The Author(s). Published by the American Astronomical Society. **OPEN ACCESS**

Discovery of the Optical and Radio Counterpart to the Fast X-Ray Transient EP 240315a

J. H. Gillanders^{1,13}, L. Rhodes^{1,13}, S. Srivastav^{1,13}, F. Carotenuto¹, J. Bright¹, M. E. Huber², H. F. Stevance^{1,3}, S. J. Smartt^{1,3}, K. C. Chambers², T.-W. Chen⁴, R. Fender^{1,5}, A. Andersson¹, A. J. Cooper¹, P. G. Jonker⁶, F. J. Cowie¹, T. de Boer², N. Erasmus⁷, M. D. Fulton³, H. Gao², J. Herman², C.-C. Lin², T. Lowe², E. A. Magnier², M. M. D. Fulton³, H. Gao², J. Herman², C.-C. Lin², T. Lowe², E. A. Magnier², S. M. M. S. Startavana and S. S. Startavan

H.-Y. Miao⁴^(b), P. Minguez², T. Moore³^(b), C.-C. Ngeow⁴^(b), M. Nicholl³^(b), Y.-C. Pan⁴^(b), G. Pignata⁸^(b), A. Rest^{9,10}

X. Sheng³ , I. A. Smith¹¹ , K. W. Smith³ , J. L. Tonry² , R. J. Wainscoat² , J. Weston³, S. Yang¹², and D. R. Young³ ¹Astrophysics sub-Department, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH, UK; james.gillanders@physics.ox.ac.uk, lauren.rhodes@physics.ox.ac.uk, shubham.srivastav@physics.ox.ac.uk

² Institute for Astronomy, University of Hawai', 2680 Woodlawn Drive, Honolulu, HI 96822, USA ³ Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, UK

Graduate Institute of Astronomy, National Central University, 300 Jhongda Road, 32001 Jhongli, Taiwan

⁵ Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa ⁶ Department of Astrophysics/IMAPP, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands

South African Astronomical Observatory, PO Box 9, Observatory 7935, Cape Town, South Africa

⁸ Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Casilla 7D, Chile
 ⁹ Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA

¹⁰ Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA ¹¹ Institute for Astronomy, University of Hawai'i, 34 Ohia Ku St., Pukalani, HI 96768-8288, USA ¹² Henan Academy of Sciences. Zhenezhou 450046. Henan, People's Republic of China Henan Academy of Sciences, Zhengzhou 450046, Henan, People's Republic of China

Received 2024 April 16; revised 2024 June 5; accepted 2024 June 6; published 2024 June 26

Abstract

Fast X-ray Transients (FXTs) are extragalactic bursts of soft X-rays first identified $\gtrsim 10$ yr ago. Since then, nearly 40 events have been discovered, although almost all of these have been recovered from archival Chandra and XMM-Newton data. To date, optical sky surveys and follow-up searches have not revealed any multiwavelength counterparts. The Einstein Probe, launched in 2024 January, has started surveying the sky in the soft X-ray regime (0.5-4 keV) and will rapidly increase the sample of FXTs discovered in real time. Here we report the first discovery of both an optical and radio counterpart to a distant FXT, the fourth source publicly released by the Einstein Probe. We discovered a fast-fading optical transient within the 3' localization radius of EP 240315a with the all-sky optical survey ATLAS, and our follow-up Gemini spectrum provides a redshift, $z = 4.859 \pm 0.002$. Furthermore, we uncovered a radio counterpart in the S band (3.0 GHz) with the MeerKAT radio interferometer. The optical (rest-frame UV) and radio luminosities indicate that the FXT most likely originates from either a long gamma-ray burst or a relativistic tidal disruption event. This may be a fortuitous early mission detection by the Einstein Probe or may signpost a mode of discovery for high-redshift, high-energy transients through soft X-ray surveys, combined with locating multiwavelength counterparts.

Unified Astronomy Thesaurus concepts: Transient sources (1851); Relativistic jets (1390); High energy astrophysics (739); X-ray transient sources (1852); Optical identification (1167); Radio interferometry (1346)

1. Introduction

In the past decade, a few tens of fast X-ray transients (FXTs) have been discovered with Chandra, XMM-Newton, and eROSITA (see, e.g., Jonker et al. 2013; Glennie et al. 2015; Bauer et al. 2017; Alp & Larsson 2020; Quirola-Vásquez et al. 2022, 2023). These bursts are soft (0.3-10 keV) and exhibit a wide range of timescales, lasting from $\sim 10^1$ to 10^4 s, with a variety of astrophysical interpretations having been invoked to explain their properties.

Events such as CDF-S XT2 (Xue et al. 2019), XRT 210423 (Ai & Zhang 2021; Eappachen et al. 2023), and CDF-S XT1 (Sarin et al. 2021) have been interpreted as resulting from a binary neutron star (BNS) merger. CDF-S XT2 and XRT 210423 both showed a clear plateau in the X-ray light curve, followed by a sharp drop, consistent with model predictions for a rapidly spinning magnetar remnant. On the other hand, XRT 000519 showed precursor X-ray emission 4000 and 8000 s before the main flare (Jonker et al. 2013), the timescale of which agrees with the expected orbital timescale of a white dwarf (WD) spiraling toward an intermediate-mass black hole on an eccentric orbit (MacLeod et al. 2016). Glennie et al. (2015) found two FXTs in archival Chandra data and reported an infrared (IR) Galactic counterpart at a distance of 80 pc for one of them (XRT 120830). They interpret this FXT to be consistent with an M dwarf superflare, but the other had no detected counterpart.

Alp & Larsson (2020) reported 12 FXTs from XMM-Newton, and from inference of potential hosts they interpret the FXTs as emission from shock breakout (SBO) in Wolf-Rayet stars within a dense circumstellar medium or (favored in two cases) red supergiant progenitors. Eappachen et al. (2024) showed that seven of these have plausible host galaxies with spectroscopic redshifts 0.098 < z < 0.645, with one being a likely Galactic flare star. They proposed that one FXT (XRT 110621) is consistent with being a supernova SBO, but the spectroscopic redshifts of the others showed that their peak

¹³ These authors contributed equally to this work.

Original content from this work may be used under the terms ()of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

THE ASTROPHYSICAL JOURNAL LETTERS, 969:L14 (12pp), 2024 July 1

X-ray luminosities were above that deemed feasible for supernova SBOs. Soderberg et al. (2008) report an X-ray detection that they associate with the SBO from SN 2008D, at a distance of 27 Mpc (see also Chevalier & Fransson 2008; Mazzali et al. 2008; Modjaz et al. 2009). Eappachen et al. (2024) also searched for contemporaneous optical counterparts in the Pan-STARRS and Asteroid Terrestrial-impact Last Alert System (ATLAS) wide-field surveys but found none. The detection limits range in depth (from $m_w \simeq 22$ to $m_o \simeq 18.4$; AB mag), and the delay between the bursts and the observations ranges from 1 to 170 days. The most stringent limit on any contemporaneous optical emission remains the serendipitous observation of the location of CDF-S XT 1 with the Very Large Telescope just 80 minutes after the burst (Bauer et al. 2017). With this observation, no associated optical counterpart-or host galaxy-was detected, down to a limiting R-band magnitude $m_R > 25.7$ AB mag.

The discovery and rapid follow-up of FXTs are expected to accelerate since the launch of the Einstein Probe (EP; Yuan et al. 2022) on 2024 January 9. With its instantaneous wide field of view of 3600 deg², the mission is designed to survey the available night-time sky several times per day in the soft X-ray regime (0.5-4 keV) and to follow up detected transients. During its commissioning phase, it has already proven to be a valuable discovery instrument, with four new X-ray transient sources reported by mid-March. The first, EPW 20240219aa (Zhang et al. 2024b), has had no multiwavelength counterpart identified, but an association with a subthreshold Fermi Gamma-ray Burst Monitor (GBM) detection has been made (Zhang et al. 2024a; Fletcher et al. 2024), suggesting that it may be a GRB event. The following two EP transients released are almost certainly Galactic. EPW 20240305aa (Liu et al. 2024b) has been well localized by Swift/XRT (Liu et al. 2024a) and is coincident with a Gaia DR3 star (late A type or early F type; Monageng et al. 2024), with radio emission observed by the Australian Telescope Compact Array (ATCA; An et al. 2024). EP 240309a was detected as a highly variable X-ray source (previously detected by XMM-Newton, Swift, and eROSITA; Ling et al. 2024) and has been confirmed as a cataclysmic variable (CV) with an orbital period of 3.76 hr (Buckley et al. 2024; Rodriguez & Kulkarni 2024).

The fourth bright transient source publicly released by the EP mission, EP 240315a, was detected on 2024 March 15 20:10:44 UTC ($T_0 = MJD 60384.84079$) by the wide-field X-ray telescope (Zhang et al. 2024c). The EP team reported that the event lasted 1600 s, with a peak flux $f_X \sim 3 \times 10^{-9}$ erg s⁻¹ cm⁻² in the 0.5–4 keV band. No previously known X-ray sources were identified in the 3' localization radius, making it a candidate extragalactic FXT.

In this Letter, we report the discovery of the optical and radio transient associated with EP 240315a, the first time multiwavelength counterparts of a "distant" ($D \gtrsim 100$ Mpc) extragalactic FXT have been recorded. Throughout this Letter we assume Λ CDM cosmology with a Hubble constant $H_0 = 67.7$ km s⁻¹ Mpc⁻¹, $\Omega_M = 0.309$, and $\Omega_{\Lambda} = 0.691$ (Planck Collaboration et al. 2016). We also assume a line-ofsight Milky Way extinction of E(B - V) = 0.042 AB mag, which corresponds to $A_V = 0.130$ AB mag (Schlafly & Finkbeiner 2011). Gillanders et al.

2. Multiwavelength Counterpart Discovery and Follow-Up

2.1. Discovery of the Optical Counterpart with ATLAS

ATLAS (Tonry et al. 2018b) is a quadruple 0.5 m telescope system, operating a wide-field all-sky survey. ATLAS continually surveys the sky, typically four times in 24 hr when all four units are operating normally, and we promptly process the data to search for extragalactic transients (Smith et al. 2020). During its normal survey operations, ATLAS observed the localization region of EP 240315a at MJD 60384.894,¹⁴ corresponding to $T_0 + 1.28$ hr (note that the first of the four 30 s exposures was obtained at MJD 60384.88673, or $T_0 + 1.10$ hr). Recall that T_0 is the time of the detection from the EP (MJD 60384.84079; Zhang et al. 2024c).

Observations were performed by the Sutherland unit in South Africa, with 4×30 s exposures obtained using the *cyan*, or *c*, filter (analogous to the Pan-STARRS/Sloan Digital Sky Survey g + r filters). During automated image processing (outlined by Smith et al. 2020), the observations were reduced and calibrated photometrically and astrometrically with the reference catalog RefCat2 (Tonry et al. 2018a), and a reference image was subtracted. We registered the optical transient AT 2024eju (ATLAS24dsx) with sky coordinates of R.A. = + 141.64763, decl. = -9.53401 ($9^h26^m35^*43$, $-9^\circ32'02''.4$) and an observed magnitude $m_c = 19.38 \pm 0.08$ AB mag on the Transient Name Server (Tonry et al. 2024). With no detection of the source in ATLAS images 1.75 days before, no historical variability, and a 0/8 spatial separation, we reported this as a plausible counterpart to EP 240315a (Srivastav et al. 2024b).

In Figure 1, we present the nightly stacked $(4 \times 30 \text{ s})$ target and difference images from ATLAS for the detection epoch and the neighboring epochs immediately pre- and postdetection. The presence of the transient on MJD 60384.894 is unmistakable, with no evidence for AT 2024eju in the most recent previous observation (indicating no preexisting transient activity) and no evidence in the subsequent observation (indicating its rapid fade). Figure 1 visually highlights how rapidly AT 2024eju rose and subsequently faded.

2.2. Optical Photometric Follow-Up

After the initial discovery with ATLAS, we triggered rapid multiband follow-up imaging observations with the Pan-STARRS telescopes, the Liverpool Telescope, and the Lulin Observatory. All three observatories were triggered and on-source within 24–36 hr.

We used the 40 cm SLT located at Lulin Observatory, Taiwan, to obtain *r*-band images of the field of EP 240315a as part of the Kinder project (Chen et al. 2021). The initial observation with SLT began at MJD 60385.673, or $T_0 + 0.832$ days. We successfully recovered AT 2024eju in the images, albeit with a marginal detection (Chen et al. 2024a), indicating a fast fade within the first 24 hr of the FXT discovery. Subsequently, we conducted continuous observations of AT 2024eju using both SLT and the Lulin One-meter Telescope (LOT) with *i*-band imaging. We employed the Kinder pipeline (Yang et al. 2021) to conduct point-spread function (PSF) photometry for AT 2024eju without template subtraction. The derived magnitudes and 2σ upper limits were

 $^{1^{4}}$ Here (and for all other optical imaging observations) we quote the epoch of observation as the midpoint of the exposure.

THE ASTROPHYSICAL JOURNAL, 970:189 (39pp), 2024 August 1 © 2024. The Author(s). Published by the American Astronomical Society. OPEN ACCESS

Final Moments. II. Observational Properties and Physical Modeling of Circumstellarmaterial-interacting Type II Supernovae

W. V. Jacobson-Galán¹ ©, L. Dessar² ©, K. W. Davis³ ©, C. D. Kilpatrick^{4,5} ©, R. Margutti^{1,6} ©, R. J. Foley³ ©, R. Chornock¹ ©, G. Terrera⁷ ©, D. Hiramatuš^{3,9} O, M. Rewsome^{7,10} ©, E. Padilla Gonzalez^{7,110} ©, C. Pellegrino^{11,0} ©, D. A. Howell^{7,10} ©, A. V. Filippenko¹ ©, D. A. Coulter^{1,0} ©, D. Anderson^{1,2,13} ©, C. R. Angus^{4,15} ©, K. Auchetl^{3,16} ©, K. A. Bostrone^{1,7,38} ©, T. G. Brink¹ O, C. Gall¹⁴ ©, D. A. Coulter^{1,9} ©, T. & Bosr² O, M. R. Drout¹ O, N. Earl^{2,2} K. Ertin^{1,2,13} ©, J. R. Farah^{7,10} ©, D. Faria^{1,4} ©, C. Gall¹⁴ ©, H. Gaa²⁰ Q, M. A. Gerlach^{2,5}, F. Guo² A. Haynie^{2,7,20} Q, G. Hosseinzadeh¹⁷ ©, A. L. Diik²¹ ©, S. W. Jha²³ O, S. Rest²² ©, R. Michael Rich³ ©, C. Rojas-Branov Č, H. Seart^{5,4} ©, K. Taggart² O, A. V. Villar⁴ O, R. J. Rest^{19,20} O, S. Rest²² ©, R. Michael Rich³ O, A. R. Wasserman^{44,35} Q, S. Yan²⁶ O, Y. Yang¹ O, J. Zhang^{4,5,47} O, and W. Zheng¹ O (Department of Astronomy, University of California, Santa Cruz, CA 905064, USA ⁴ Center for Interdisciplinary Exploration and Research in Astrophysics (CERA). Northwestern University, Evanston, IL 60208, USA ⁶ Department of Astronomy, University of California, Berkelye, CA 9470-3411, USA ¹⁰ Department of Physics and Astronomy. Northwestern University, Evanston, IL 60208, USA ⁶ Department of Physics, University of California, Berkelye, CA 9470-3411, USA ¹⁰ Department of Physics and Astronomy. Northwestern University, Evanston, IL 60208, USA ⁶ Ta Cantor Physics (Datoronomy University of California, Berkelye, CA 9470-3411, USA ¹⁰ Department of Physics, University of California, Berkelye, CA 9470-3411, USA ¹⁰ Department of Physics, University of California, Berkelye, CA 9470-3411, USA ¹⁰ Department of Physics, University of California, Berkelye, CA 9470-340, USA ¹⁰ Department of Astronomy, University of Virginia, Cantanental Interactions, USA ¹⁰ Department of Physics, University of California, Berkelye, CA 9472-7300, USA ¹¹ Depart

³⁶ Vunnan Observatories (YNAO), Chinese Academy of Sciences, Kunming 650216, People's Republic of China
³⁷ Key Laboratory for the Structure and Evolution of Celestial Objects, CAS, Kunming, 650216, People's Republic of China

Received 2024 March 4; revised 2024 April 22; accepted 2024 April 25; published 2024 July 31

Abstract

We present ultraviolet/optical/near-infrared observations and modeling of Type II supernovae (SNe II) whose early time ($\delta t < 2$ days) spectra show transient, narrow emission lines from shock ionization of confined ($r < 10^{15}$ cm) circumstellar material (CSM). The observed electron-scattering broadened line profiles (i.e., IIn-like) of H I, He I/II, C IV, and N III/IV/V from the CSM persist on a characteristic timescale (t_{IIn}) that marks a transition to a lower-density CSM and the emergence of Doppler-broadened features from the fast-moving SN ejecta. Our sample, the largest to date, consists of 39 SNe with early time IIn-like features in addition to 35 "comparison" SNe with no evidence of early time IIn-like features, all with ultraviolet observations. The total sample includes 50 unpublished objects with a total of 474 previously unpublished spectra and 50 multiband light curves, collected

³⁸ LSST-DA Catalyst Fellow.

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

1

THE ASTROPHYSICAL JOURNAL, 970:189 (39pp), 2024 August 1

days to a week after first light, and the explosion proceeds to evolve photometrically and spectroscopically as a standard RSG explosion—a light-curve plateau or linear (in magnitudes) decline where hydrogen recombination mitigates the release of stored radiative energy, and the photospheric spectra are dominated by P Cygni profiles formed from H, He, and Fegroup elements in the SN ejecta.

2.2. Photometric Observations

All gold-, silver-, and comparison-sample objects were observed during their evolution with UVOT (Roming et al. 2005) on board the Neil Gehrels Swift Observatory (Gehrels et al. 2004). We performed aperture photometry with a 5' region radius with uvotsource within HEAsoft v6.26,41 following the standard guidelines from Brown et al. (2014).42 In order to remove contamination from the host galaxy, we employed images acquired at $\delta t > 1$ yr, assuming that the SN contribution is negligible at this phase. This is supported by visual inspection in which we found no flux at the SN location. We subtracted the measured count rate at the location of the SN from the count rates in the SN images and corrected for pointspread-function (PSF) losses following the prescriptions of Brown et al. (2014). We also note that the w^2 filter has a known red leak (Brown et al. 2010), which could impact postpeak observations when the SN is significantly cooler.

For the total sample, optical/NIR photometry was obtained from a variety of collaborations and telescopes. Pan-STARRS telescope (PS1/2; Kaiser et al. 2002; Chambers et al. 2017) imaging in the grizy bands was obtained through YSE (Jones et al. 2021). Data storage/visualization and follow-up coordination was done through the YSE-PZ web broker (Coulter et al. 2022, 2023). The YSE photometric pipeline is based on photpipe (Rest et al. 2005), which relies on calibrations from Magnier et al. (2020) and Waters et al. (2020). Each image template was taken from stacked PS1 exposures, with most of the input data from the PS1 3π survey. All images and templates were resampled and astrometrically aligned to match a skycell in the PS1 sky tessellation. An image zero-point is determined by comparing PSF photometry of the stars to updated stellar catalogs of PS1 observations (Flewelling et al. 2020). The PS1 templates are convolved with a three-Gaussian kernel to match the PSF of the nightly images, and the convolved templates are subtracted from the nightly images with HOTPANTS (Becker 2015). Finally, a flux-weighted centroid is found for the position of the SN in each image, and PSF photometry is performed using "forced photometry": the centroid of the PSF is forced to be at the SN position. The nightly zero-point is applied to the photometry to determine the brightness of the SN for that epoch.

We obtained uUBVgriz imaging with the Las Cumbres Observatory (LCO) 1 m telescopes through the Global Supernova Project (GSP) and YSE. After downloading the BANZAIreduced images from the LCO data archive (McCully et al. 2018), we used photpipe (Rest et al. 2005) to perform DoPhot PSF photometry (Schechter et al. 1993). All photometry was calibrated using PS1 stellar catalogs described above with additional transformations to the SDSS *u* band derived from Finkbeiner et al. (2016). For additional details on our reductions, see Kilpatrick & Foley (2018). We also

Jacobson-Galán et al.

obtained photometry using a 0.7 m Thai Robotic Telescope at Sierra Remote Observatories and the 1 m Nickel telescope at Lick Observatory in the *BVRI* bands. Images are bias subtracted and field flattened. Absolute photometry is obtained using stars in the $10' \times 10'$ field of view. We also observed objects with the Lulin 1 m telescope in *griz* bands and the Swope 1 m telescope in *uBVgri*. Standard calibrations for bias and flat-fielding were performed on the images using IRAF, and we reduced the calibrated frames in photpipe using the methods described above for the LCO images.

Sample objects were also observed with ATLAS, a twin 0.5 m telescope system installed on Haleakala and Maunaloa in the Hawai'ian islands that robotically surveys the sky in cyan (c) and orange (o) filters (Tonry et al. 2018a). The survey images are processed as described by Tonry et al. (2018a) and photometrically and astrometrically calibrated immediately (using the RefCat2 catalog; Tonry et al. 2018b). Template generation, image-subtraction procedures, and identification of transient objects are described by Smith et al. (2020). PSF photometry is carried out on the difference images, and all detections more significant than 5σ are recorded and go through an automatic validation process that removes spurious objects (Smith et al. 2020). Photometry on the difference images (both forced and nonforced) is obtained from an automated PSF fitting as documented by Tonry et al. (2018a). The photometry presented here is derived from the weighted averages of the nightly individual 30 s exposures, carried out with forced photometry at the position of each SN. In addition to our observations, we include gri-band photometry from ZTF (Bellm et al. 2019; Graham et al. 2019) forced-photometry service (Masci et al. 2019).

In Figure 2, we present new Transiting Exoplanet Survey Satellite (TESS; Ricker et al. 2015) light curves of SNe 2019nvm and 2021dbg, reduced using the TESSreduce package (Ridden-Harper et al. 2021), compared to the previously published TESS light curve of SN 2020fqv (Tinyanont et al. 2022). These observations have been binned to a 6 hr cadence and are able to constrain the uncertainty in the time of first light to a few hours. To our knowledge, SN 2021dbg represents the first SN II with IIn-like features to have a complete TESS light curve.

For all SNe, the Milky Way (MW) V-band extinction and color excess along the SN line of sight are inferred using a standard Fitzpatrick (1999) reddening law ($R_V = 3.1$). In addition to the MW color excess, we estimate the contribution of host-galaxy extinction in the local SN environment using Na I D absorption lines for all gold-, silver-, and comparisonsample objects. To determine if NaID is detected, we fit the continuum in a region around the transition based on the spectral resolution and calculate the residuals between the continuum fit and the spectral data. We then integrate the residual flux and confirm that it is greater than or equal to 3 times the residual flux uncertainty in order to claim a "detection." We calculate the NaID equivalent width (EW) and use $A_V^{\text{host}} = (0.78 \pm 0.15) \text{ mag} \times (\text{EW}_{NaID}/\text{\AA})$ from Stritzinger et al. (2018) to convert these EWs to an intrinsic host-galaxy E(B - V), also using the Fitzpatrick (1999) reddening law. A visualization of this method is shown in Figure A2 in the Appendix. For nondetections, we calculate an upper limit on the EW and host reddening using the fitted continuum flux. We present a detailed discussion of the hostextinction uncertainties in Appendix A. We do not apply

⁴¹ We used the calibration database (CALDB) version 20201008.

⁴² https://github.com/gterreran/Swift_host_subtraction

A&A, 689, A200 (2024) https://doi.org/10.1051/0004-6361/202451037 © The Authors 2024

Testing particle acceleration in blazar jets with continuous high-cadence optical polarization observations

Ioannis Liodakis^{1,2,*}⁽⁰⁾, Sebastian Kiehlmann^{1,3}⁽⁰⁾, Alan P. Marscher⁴⁽⁰⁾, Haocheng Zhang^{5,6}, Dmitry Blinov^{1,3}⁽⁰⁾, Svetlana G. Jorstad^{4,7}, Iván Agudo⁸⁽⁰⁾, Erika Benítez⁹⁽⁰⁾, Andrei Berdyugin¹⁰⁽⁰⁾, Giacomo Bonnoli^{11,8}, Carolina Casadio¹⁽⁰⁾, Chien-Ting Chen², Wen-Ping Chen¹², Steven R. Ehlert², Juan Escudero⁸⁽⁰⁾, Tatiana S. Grishina⁷⁽⁰⁾, David Hiriart⁹⁽⁰⁾, Angela Hsu¹², Ryo Imazawa¹³, Helen E. Jermak¹⁴⁽⁰⁾, Jincen Jose^{17,18}, Philip Kaaret²⁽⁰⁾, Evgenia N. Kopatskaya⁷⁽⁰⁾, Bhavana Lalchand¹²⁽⁰⁾, Elena G. Larionova⁷⁽⁰⁾, Elina Lindfors^{10,15}, José M. López¹⁶, Callum McCall¹⁴, Daria A. Morozova⁷, Efthymios Palaiologou¹, Shivangi Pandey^{17,19}⁽⁰⁾, Juri Poutanen¹⁰⁽⁰⁾, Suvendu Rakshit¹⁷⁽⁰⁾, Pablo Reig¹⁰, Mahito Sasada²⁰⁽⁰⁾, Sergey S. Savchenko^{7,21}⁽⁰⁾, Elena Shablovinskaya^{22,23}⁽⁰⁾, Sharma Neha¹⁷⁽⁰⁾, Manisha Shrestha²⁴⁽⁰⁾, Iain A. Steele¹⁴⁽⁰⁾, Ivan S. Troitskiy⁷⁽⁰⁾, Yulia V. Troitskaya⁷⁽⁰⁾, Makoto Uemura^{13,25,26}⁽⁰⁾, Andrey A. Vasilyev⁷⁽⁰⁾, Zachary Weaver⁴,

Klaas Wiersema^{27,28}, and Martin C. Weisskopf²

(Affiliations can be found after the references)

Received 8 June 2024 / Accepted 21 June 2024

ABSTRACT

Variability can be the pathway to understanding the physical processes in astrophysical jets. However, the high-cadence observations required to test particle acceleration models are still missing. Here we report on the first attempt to produce continuous, >24 hour polarization light curves of blazars using telescopes distributed across the globe, following the rotation of the Earth, to avoid the rising Sun. Our campaign involved 16 telescopes in Asia, Europe, and North America. We observed BL Lacertae and CGRaBS J0211+1051 for a combined 685 telescope hours. We find large variations in the polarization degree and angle for both sources on sub-hour timescales as well as a ~180° rotation of the polarization angle in CGRaBS J0211+1051 in less than two days. We compared our high-cadence observations to particle-in-cell magnetic reconnection and turbulent plasma simulations. We find that although the state-of-the-art simulation frameworks can produce a large fraction of the polarization properties, they do not account for the entirety of the observed polarization behavior in blazar jets.

Key words. radiation mechanisms: non-thermal – techniques: polarimetric – galaxies: active – BL Lacertae objects: general – galaxies: jets

1. Introduction

Blazars are active galactic nuclei with powerful jets oriented within a few degrees of the line of sight of an observer on Earth (Blandford et al. 2019; Hovatta & Lindfors 2019). They show a plethora of exciting behavior, but are most notable for their broadband emission from radio to γ -rays (e.g., Ajello et al. 2020), extreme variability down to minute timescales (e.g., Ackermann et al. 2016), highly polarized emission, with a polarization degree that can exceed 45% (e.g., Shao et al. 2019), and highly relativistic jets (Lister et al. 2021; Weaver et al. 2022). The origin of the extreme, diverse variability in different wavelengths is not fully understood but holds the keys to understanding the physical processes in astrophysical jets. A few models have now been proposed to explain the observed variability patterns. They include shocks in jets (Marscher & Gear 1985), jets in jets (Giannios et al. 2009), turbulence (Marscher 2014; Webb & Sanz 2023), magnetic reconnection (Hosking & Sironi 2020; Zhang et al. 2020), shock-shock collisions (Liodakis et al. 2020), kink instabilities (Zhang et al. 2017), Doppler factor variations (Raiteri et al. 2017b,a), and others. A great deal of effort has been made to characterize the jet's variability on diverse timescales. The recent introduction of datasets from exoplanet satellites like *Kepler* and the Transiting Exoplanets Survey Satellite (TESS) (Sasada et al. 2017; Weaver et al. 2020; Raiteri et al. 2021) has given us an additional unique view of blazar variability. However, despite all these efforts, we still lack a consensus on the mechanisms that drive variability in blazar jets.

Polarization can also be used to probe the physical processes that govern the jets. This is because different models often predict different polarization properties (e.g., Marscher 2014; Zhang et al. 2014; Peirson & Romani 2018, 2019; Tavecchio 2021). Moreover, blazars show a peculiar polarization behavior that often takes place in the form of rotations of the polarization angle (e.g., Marscher et al. 2008, 2010; Blinov et al. 2015, 2016a). Polarization studies of blazars have been limited by the cadence of the observations, the lack of dedicated experiments (see Kiehlmann et al. 2021 for a discussion), and, until recently, the limited wavelength coverage, as most studies had been in the optical. The recent launch of the Imaging X-ray Polarimetry Explorer (IXPE; Weisskopf et al. 2022) has opened new avenues to studying the high-energy Universe. The first observations of blazars suggest that particle acceleration in jets takes place in shocks, with the emission becoming energy-stratified owing to particle cooling (Liodakis et al. 2022; Di Gesu et al. 2022; Kouch et al. 2024). More interestingly, IXPE has already managed to detect the first X-ray polarization angle rotation in Mrk 421 (Di Gesu et al. 2023; Kim et al. 2024) in a blind

A200, page 1 of 9

^{*} Corresponding authors; liodakis@ia.forth.gr

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.

survey. Mrk 421 showed a >360° rotation with a rate of $80-90^{\circ}$ d⁻¹. This would suggest that large variations in the polarization angle can take place within a single observing night (see also MAGIC Collaboration 2018) and are missed in the optical because of the 180° ambiguity of the polarization angle and our inability to monitor a blazar from one location continuously. Uninterrupted observations have only been achieved in a limited number of campaigns (e.g., Bhatta et al. 2016; Weaver et al. 2020).

Here we aim to combine the power of variability and polarization by producing continuous light curves from ground-based observations. This was achieved by combining multiple telescopes across the world using the rotation of the Earth. Different telescopes have often been combined for blazar studies (e.g., Raiteri & Villata 2021) and other purposes (e.g., Brown et al. 2013). Here we focus on polarimetry and probing shorter variability timescales by producing continuous, uninterrupted, longer than 24-hour time series that we can use to test particle acceleration models. In Sect. 2 we describe the telescopes used in this work and our observing strategy, and in Sect. 3 we discuss our analysis procedures. In Sect. 4 we present the final time series and examine their variability properties. In Sect. 5 we test different models of particle acceleration, and in Sect. 6 we discuss our findings. We focus on linear polarization, which we refer to as "polarization" throughout the paper for simplicity.

2. Telescopes and observing strategy

Our campaign, which we dubbed the NOn-stop Polarization Experiment (NOPE), consisted of 16 telescopes across the world with a combined 685 telescope hours over seven nights. Those telescopes/observatories are, the Aryabhatta Research Institute of Observational Sciences (ARIES), the Calar Alto Observatory, the Crimean Observatory, T60 at the Haleakala Observatory (Piirola et al. 2014, 2020), the Kanata telescope (Uemura et al. 2017), the Liverpool Telescope (Steele et al. 2004), LX-200 (Larionov et al. 2008), Lulin Observatory, the Nordic Optical Telescope (Hovatta et al. 2016; Nilsson et al. 2018), the Perkins Telescope Observatory (PTO; Jorstad et al. 2010), the Observatorio Astronómico Nacional at San Pedro Mártir (OAN-SPM), the Zeiss-1000/MAGIC at the Special Astrophysical Observatory of RAS (Afanasiev et al. 2023; Komarov et al. 2020), Sierra Nevada Observatory, RoboPol at the Skinakas Observatory (Ramaprakash et al. 2019), and the University of Leicester Observatory (Wiersema et al. 2023). NOPE was scheduled for the dark time of 2-8 November 2021. The volcano eruption in La Palma prevented us from acquiring data from the Liverpool Telescope and the Nordic Optical Telescope. Weather related reasons prevented the use of the telescope at the University of Leicester Observatory as well. Additional telescope hours were lost due to weather in different locations; however, all remaining telescopes provided a reasonable amount of data.

To probe fast variability timescales, we selected the most variable sources found from the four years of monitoring in the RoboPol sample (Blinov et al. 2021) that were visible for at least half the night from most locations. Since rotations of the polarization has been shown to be connected to γ -ray activity (Blinov et al. 2018), we monitored the γ -ray light curves of all the objects in the sample (Baldini et al. 2021; Abdollahi et al. 2023) as well as for other flaring sources using alert brokers (e.g., Astronomer's telegram¹).

3. Optical polarization observations

3.1. Observations and data reduction

At the time of the scheduled observations, there were no outbursts or elevated activity reported; hence, we opted to observe BL Lacertae (BL Lac), which was in a prolonged outburst that had lasted a few months (Raiteri et al. 2023) and CGRaBS J0211+1051 (hereafter J0211) that was in a historically low brightness and low polarization degree period (Blinov et al. 2021). BL Lac is typically a low synchrotron peaked blazar (i.e., synchrotron peak frequency $<10^{14}$ Hz, Ajello et al. 2020; Middei et al. 2023), but turns into an intermediate peaked source during flares (i.e., synchrotron peak frequency $10^{14} < v_{syn} <$ 1015 Hz; e.g., Peirson et al. 2023). J0211 is an intermediate peaked blazar (Peirson et al. 2022). BL Lac was observed for the first half of each night while J0211 for the second half. The observations were performed in the R band. The data were analyzed using either standard analysis procedures or existing pipelines at individual observatories (e.g., King et al. 2014; Panopoulou et al. 2015; Nilsson et al. 2018). All the polarimetric measurements were performed with a 5" aperture radius. We preselected several polarized (HD 204827 and BD +59.389) and unpolarized (BD+32.3739, BD +28.4211, HD 212311, HD 14069, and G191B2B) standard stars, commonly used by blazar monitoring program like the Steward Observatory² and RoboPol (Blinov et al. 2023), to be used by all the observatories. Since we are interested in the polarization variability, we did not apply any correction to the polarization degree from the dilution of the host-galaxy, which, at the selected aperture, should be negligible (e.g., Meisner & Romani 2010).

For both sources we are able to achieve a median cadence of five minutes. The shortest interval between observations was zero, and the longest, which occurred toward the end of our campaign, was roughly nine hours for BL Lac and twelve hours for J0211.

3.2. Data post-processing

Systematic shifts. Once all the data were collected, small systematic shifts on the order of $<0.1^{mag}$ and <0.5% were applied to the brightness and polarization degree, respectively, to align overlapping observations. Those shifts originate from the different efficiency in the instruments, instrumental setup, seeing, and minor differences in the analysis pipelines.

Data binning. We averaged data points in bins of 30 min duration. These bins were interactively identified³ using the method described in Kiehlmann (2015, Sect. 2.1.2). In the selected bins, we calculated the mean value of q and u. Even though the variability in the bins is below the noise level, we expected some intrinsic variability. Therefore, we did not use the uncertainty-weighted mean, which is based on the assumption that all measurements are estimates of the same intrinsic value. To derive realistic uncertainties for the average q and u, we calculated (i) the mean of the corresponding uncertainties and (ii) the standard deviation of q and u in the bin, and we used the larger value of the two. We then calculated the corresponding pand χ using Eq. (1),

$$p = \sqrt{q^2 + u^2}, \chi = \frac{1}{2}\arctan\left(\frac{u}{q}\right),\tag{1}$$

https://www.astronomerstelegram.org/

A200, page 2 of 9

² http://james.as.arizona.edu/~psmith/SPOL/polstds. html

³ We use the smart_binning function from https://github.com/ skiehl/timeseriestools.

THE ASTROPHYSICAL JOURNAL, 972:177 (13pp), 2024 September 10 © 2024. The Author(s). Published by the American Astronomical Society. **OPEN ACCESS**

SN 2024ggi in NGC 3621: Rising Ionization in a Nearby, Circumstellar-materialinteracting Type II Supernova

W. V. Jacobson-Galán^{1,21}, K. W. Davis², C. D. Kilpatrick^{3,4}, L. Dessart⁵, R. Margutti^{1,6}, R. Chornock¹, R. J. Foley², P. Arunachalam², K. Auchettl^{2,7}, C. R. Bom⁸, R. Cartier⁹, D. A. Coulter¹⁰, G. Dimitriadis¹¹, D. Dickinson¹², M. R. Drout¹³, A. T. Gagliano¹⁴, C. Gall¹⁵, B. Garretson¹², L. Izzo^{15,16}, D. O. Jones¹⁷, N. LeBaron¹⁰, H.-Y. Miao¹⁸, D. Milisavljevic¹², Y.-C. Pan¹⁸, A. Rest^{10,19}, C. Rojas-Bravo², A. Santos⁸, H. Sears^{3,4}, B. M. Subrayan¹², K. Taggart², and S. Tinyanont²⁰

¹ Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA; wynnjg@berkeley.edu ² Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA

³ Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60202, USA

⁴ Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA ⁵ Institut d'Astrophysique de Paris, CNRS-Sorbonne Université, 98 bis boulevard Arago, F-75014 Paris, France

⁸ Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ, Brazil

⁹ Instituto de Estudios Astrofísicos, Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago, Chile

¹⁰ Space Telescope Science Institute, Baltimore, MD 21218, USA
¹¹ School of Physics, Trinity College Dublin, The University of Dublin, Dublin 2, D02 PN40, Ireland

¹² Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907, USA
¹³ David A. Dunlap Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4, Canada
¹⁴ The NSF AI Institute for Artificial Intelligence and Fundamental Interactions, 77 Massachusetts Avenue, 26-555 Cambridge, MA 02139, USA

DARK, Niels Bohr Institute, University of Copenhagen, Jagtvej 128, 2200 Copenhagen, Denmark
 ¹⁶Osservatorio Astronomico di Capodimonte, INAF, Salita Moiariello 16, Napoli, 80131, Italy
 ¹⁷Institute for Astronomy, University of Hawai'i, 640 N. A'ohoku Pl., Hilo, HI 96720, USA

¹⁸ Graduate Institute for Astronomy, National Central University, 300 Zhongda Road, Zhongli, Taoyuan 32001, Taiwan ¹⁹ Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218, USA

²⁰ National Astronomical Research Institute of Thailand, 260 Moo 4, Donkaew, Maerim, Chiang Mai 50180, Thailand Received 2024 April 29; revised 2024 June 25; accepted 2024 June 25; published 2024 September 5

Abstract

We present UV-optical-near-infrared observations and modeling of supernova (SN) 2024ggi, a type II supernova (SN II) located in NGC 3621 at 7.2 Mpc. Early-time ("flash") spectroscopy of SN 2024ggi within +0.8 days of discovery shows emission lines of H I, He I, C III, and N III with a narrow core and broad, symmetric wings (i.e., "In-like") arising from the photoionized, optically thick, unshocked circumstellar material (CSM) that surrounded the progenitor star at shock breakout (SBO). By the next spectral epoch at +1.5 days, SN 2024ggi showed a rise in ionization as emission lines of He II, C IV, N IV/V, and O V became visible. This phenomenon is temporally consistent with a blueward shift in the UV-optical colors, both likely the result of SBO in an extended, dense CSM. The IIn-like features in SN 2024ggi persist on a timescale of $t_{\text{IIn}} = 3.8 \pm 1.6$ days, at which time a reduction in CSM density allows the detection of Doppler-broadened features from the fastest SN material. SN 2024ggi has peak UV–optical absolute magnitudes of $M_{w2} = -18.7$ mag and $M_g = -18.1$ mag, respectively, that are consistent with the known population of CSM-interacting SNe II. Comparison of SN 2024ggi with a grid of radiation hydrodynamics and non-local thermolacting site in comparison of Si 2024ggr with a grid of ladiation hydrodynamics and non-local thermodynamic equilibrium radiative-transfer simulations suggests a progenitor mass-loss rate of $\dot{M} = 10^{-2} M_{\odot} \text{ yr}^{-1}$ ($v_w = 50 \text{ km s}^{-1}$), confined to a distance of $r < 5 \times 10^{14}$ cm. Assuming a wind velocity of $v_w = 50 \text{ km s}^{-1}$, the progenitor star underwent an enhanced mass-loss episode in the last ~3 yr before explosion.

Unified Astronomy Thesaurus concepts: Core-collapse supernovae (304); Type II supernovae (1731); Circumstellar matter (241); Radiative transfer (1335); Ultraviolet astronomy (1736)

1. Introduction

Shock breakout (SBO) from a red supergiant (RSG) star is characterized by an optical depth of $\tau \approx c/v_{\rm sh}$, where c is the speed of light and v_{sh} is the shock velocity. Consequently, the location and timescale of SBO photon escape is highly dependent on the density and extent of circumstellar material

Original content from this work may be used under the terms () () of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOL

(CSM) that borders the RSG prior to explosion. In addition to light travel effects during SBO (Waxman & Katz 2017; Goldberg et al. 2022), the SBO signal can be significantly enhanced and elongated by the presence of high-density CSM directly above the stellar surface (Chevalier & Irwin 2011; Dessart et al. 2017; Haynie & Piro 2021). Once the shock has "broken out," the associated burst of high-energy radiation will "flash ionize" the surrounding medium-observationally this manifests as a hot supernova (SN) continuum riddled with recombination lines from ionized CSM. However, to overcome the recombination timescale of the flash ionized CSM $(t_{\rm rec} \propto 1/n_e \approx {\rm hours} \ {\rm to} \ {\rm days} \ {\rm for} \ n \approx 10^{7-10} \ {\rm cm}^{-3}$ and $\rho \approx 10^{-14} - 10^{-17} \ {\rm g} \ {\rm cm}^{-3}$ at $r < 2 \ R_{\star}$, where R_{\star} is the

²¹ NSF Graduate Research Fellow.

Figure 1. Left: multicolor light curve of SN 2024ggi (circles) with respect to time since first light (MJD 60410.80 \pm 0.34) from the Swift, ATLAS, LCO, TRT, REM, T80s, and Lulin telescopes. Observed photometry is presented in the AB magnitude system and has been corrected for host-galaxy and Milky Way (MW) extinction. CMFGEN m1em2 and r1w6a model light curves are shown as solid and dashed lines, respectively. Right: early-time, reddening-corrected W2 - V color plot for SN 2024ggi (magenta stars) and SN 2023ixf (cyan stars) with respect to gold- and silver-sample objects (red, yellow, and blue lines) and comparison-sample objects (black dashed lines; Jacobson-Galán et al. 2024). SN 2024ggi shows a blueward shift in color within the first ~1 day since first light that is consistent with a rise in temperature and ionization (e.g., Figure 2).

field of view. We also observed SN 2024ggi with the Lulin 1 m telescope in the *griz* bands. Standard calibrations for bias and flat-fielding were performed on the images using IRAF, and we reduced the calibrated frames in photpipe using the same methods described above for the LCO images.

We also observed SN 2024ggi in the grizH bands with the Rapid Eye Mount (REM; Antonelli et al. 2003) telescope located in La Silla, Chile. REM is equipped with two cameras, which can observe simultaneously the same field of view $(10' \times 10')$ in the optical and NIR. Single images have been initially corrected for dark and flat frames observed each night. Then, images obtained with the same setup have been stacked and finally corrected for cosmic rays, all using a dedicated pipeline written in Python. Magnitudes were measured with aperture photometry, with a variable aperture size according to the seeing of the night, and calibrated against selected field stars from the Skymapper DR4 (Onken et al. 2024) that also have Two Micron All-Sky Survey JHK-band photometry. We also obtained ugriz imaging of SN 2024ggi with the 0.8 m T80S telescope at Cerro Tololo Inter-American Observatory, Chile. These were processed using the S-PLUS Transient Extension Program pipeline (Santos et al. 2024), including nonlinearity to recover detections of SN 2024ggi close to the saturation level. Additionally, we include o-band photometry by ATLAS that was downloaded from the forced photometry server (Tonry et al. 2018; Smith et al. 2020; Shingles et al. 2021). The complete multicolor light curve of SN 2024ggi is presented in Figure 1.

The MW V-band extinction and color excess along the SN line of sight is $A_V = 0.22$ mag and E(B - V) = 0.07 mag (Schlegel et al. 1998; Schlafly & Finkbeiner 2011), respectively, which we correct for using a standard Fitzpatrick (1999) reddening law ($R_V = 3.1$). In addition to the MW color excess, we estimate the contribution of galaxy extinction in the local SN environment. Using a high-resolution Kast spectrum of SN 2024ggi at $\delta t = 5.5$ days, we calculate Na1D2 and D1 equivalent widths (EWs) of 0.18 and 0.13 Å, respectively; these values are confirmed in a follow-up high-resolution Gemini spectrum at $\delta t = 9.2$ days. We use $A_V^{\text{host}} = (0.78 \pm 0.15) \text{ mag} \times (\text{EW}_{\text{NaID}}/\text{Å})$ from Stritzinger et al. (2018) to convert these EWs to an intrinsic host-galaxy E(B - V) and find a host-galaxy extinction of $E(B - V)_{\text{host}} = 0.084 \pm 0.018$ mag, also corrected for using the Fitzpatrick (1999) reddening law.

2.2. Spectroscopic Observations

SN 2024ggi was observed with Shane/Kast (Miller & Stone 1993) and the Goodman spectrograph (Clemens et al. 2004) at the Southern Astrophysical Research (SOAR) telescope between $\delta t = 1.5$ –9.3 days. For all of these spectroscopic observations, standard CCD processing and spectrum extraction were accomplished with IRAF.²⁴ The data were extracted using the optimal algorithm of Horne (1986). Low-order polynomial fits to calibration-lamp spectra were used to

²⁴ https://github.com/msiebert1/UCSC_spectral_pipeline

THE ASTROPHYSICAL JOURNAL, 972:194 (27pp), 2024 September 10 © 2024. The Author(s). Published by the American Astronomical Society. OPEN ACCESS

SN 2022oqm: A Bright and Multipeaked Calcium-rich Transient

S. Karthik Yadavalli¹, V. Ashley Villar¹, Luca Izzo², Yossef Zenati^{3,29}, Ryan J. Foley⁴, J. Craig Wheeler⁵, Charlotte R. Angus², Dominik Bánhidi⁶, Katie Auchettl^{4,7}, Barna Imre Bíró^{6,8}, Attila Bódi^{9,10,11}, Zsófia Bodola¹², Thomas de Boer¹³, Kenneth C. Chambers¹³, Ryan Chornock¹⁴, David A. Coulter⁴, István Csányi⁶, Borbála Cseh^{9,10,15}, Srujan Dandu⁴, Kyle W. Davis⁴, Connor Braden Dickinson⁴, Diego Farias², Joseph Farah^{16,17}, Christa Gall², Hua Gao¹³, D. Andrew Howell^{16,17}, Wynn V. Jacobson-Galan¹⁴, Nandita Khetan^{2,18}, Charles D. Kilpatrick¹⁹, Réka Könyves-Tóth^{9,10,12,20}, Levente Kriskovics^{9,10}, Natalie LeBaron¹⁴, Kayla Loertscher⁴, X. K. Le Saux⁴, Raffaella Margutti^{14,21}, Eugene A. Magnier¹³, Curtis McCully¹⁶, Peter McGill⁴, Hao-Yu Miao²², Megan Newsome^{16,17}, Estefania Padilla Gonzalez^{16,17}, András Pál^{9,10,23}, Boróka H. Pál¹², Yen-Chen Pan²², Collin A. Politsch²⁴, Conor L. Ransome¹, Enrico Ramirez-Ruiz⁴, Armin Rest^{3,25}, Sofia Rest^{3,25}, Olivia Robinson⁴, Huei Sears^{19,26}, Jackson Scheer²⁷, Ádám Sódor^{9,10,11}, Ionathan Swiff²⁷, Péter Székelv^{8,12}, Róbert Szekéts^{9,10}, Kusta Kodor^{9,10,11}, Kusta Kodor^{9,10,14}, Donathan Swiff²⁷, Péter Székelv^{8,12}, Róbert Szekéts^{9,10}, Kusta Kodor^{9,10,11}, Kusta Kodor^{9,10,14}, Donathan Swiff²⁷, Péter Székelv^{8,12}, Robert Szekéts^{9,10}, Kusta Kodor^{9,10,11}, Kusta Kodor^{9,10,} Huei Sears^{19,26}, Jackson Scheer²⁷, Ádám Sódor^{9,10,11}, Jonathan Swift²⁷, Péter Székely^{8,12}, Róbert Szakáts^{9,10}, Tamás Szalai^{8,12,28}, Kirsty Taggart⁴, Giacomo Terreran^{16,17}, Padma Venkatraman¹⁴, József Vinkó^{5,9,10,12,23}, Grace Yang²⁷⁽ⁱ⁾, and Henry Zhou² ¹ Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138-1516, USA DARK, Niels Bohr Institute, University of Copenhagen, Jagtvej 128, 2200 Copenhagen, Denmark ³ Physics and Astronomy Department, Johns Hopkins University, Baltimore, MD 21218, USA ⁴ Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA ⁵ Department of Astronomy, University of Texas at Austin, 2515 Speedway Stop C1400, Austin, TX 78712-1205, USA ⁶ Baja Astronomical Observatory of University of Szeged, Szegedi út Kt. 766, Baja 6500, Hungary School of Physics, The University of Melbourne, VIC 3010, Australia ['] School of Physics, The University of Melbourne, VIC 3010, Australia
 ⁸ HUN-REN–SZTE Stellar Astrophysics Research Group, Szegedi út Kt. 766, Baja 6500, Hungary
 ⁹ Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Budapest, Konkoly Thege Miklós út 15-17, 1121, Hungary
 ¹⁰ CSFK, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15-17, 1121, Hungary
 ¹¹ MTA CSFK Lendület Near-Field Cosmology Research Group, Konkoly Thege Miklós út 15-17, Budapest 1121, Hungary
 ¹² Department of Experimental Physics, Institute of Physics, University of Szeged, Dóm tér 9, Szeged 6720, Hungary
 ¹³ Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
 ¹⁴ Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA
 ¹⁵ MTA CSFK Lendület "Momentum" Milky Way Research Group, Hungary
 ¹⁶ Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117, USA MIA CSFX Leitudite Monentain Minky May Boston 505P, 912-91
 Ia Schwirz Gervatory Global Telescope Network, Goleta, CA 93117, USA
 ¹⁷ Department of Physics, University of California, Santa Barbara, CA 93106, USA
 ¹⁸ School of Mathematics and Physics, University of Queensland, 4101, Australia ¹⁹ Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60202, USA ²⁰ ELTE Eötvös Loránd University, Gothard Astrophysical Observatory, Szent Imre herceg út 112, Szombathely 9700, Hungary ²¹ Department of Physics, University of California, Berkeley, CA 94720, USA ²² Graduate Institute of Astronomy, National Central University, 300 Zhongda Road, Zhongli, Taoyuan 32001, Taiwan ²³ ELTE Eötvös Loránd University, Institute of Physics and Astronomy, Pázmány Péter sétány 1/A, Budapest 1117, Hungary ²⁴ Institute of Astronomy and Kavli Institute for Cosmology. Madineley Road, Cambridge, CB3 0HA, UK Institute of Astronomy and Kavli Institute for Cosmology, Madingley Road, Cambridge, CB3 0HA, UK ²⁵ Space Telescope Science Institute, Baltimore, MD 21218, USA
 ²⁶ Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
 ²⁷ Theorem 2014 Construction of the Data of the D

²⁷ Thacher School, 5025 Thacher Road, Ojai, CA 93203, USA
 ²⁸ MTA-ELTE Lendület "Momentum" Milky Way Research Group, Hungary

Received 2023 August 24; revised 2024 March 13; accepted 2024 March 27; published 2024 September 9

Abstract

We present the photometric and spectroscopic evolution of SN 2022oqm, a nearby multipeaked hydrogen- and helium-weak calcium-rich transient (CaRT). SN 2022oqm was detected 13.1 kpc from its host galaxy, the face-on spiral galaxy NGC 5875. Extensive spectroscopic coverage reveals an early hot ($T \ge 40,000$ K) continuum and carbon features observed ~1 day after discovery, SN Ic-like photospheric-phase spectra, and strong forbidden calcium emission starting 38 days after discovery. SN 2022oqm has a relatively high peak luminosity $(M_B = -17 \text{ mag})$ for CaRTs, making it an outlier in the population. We determine that three power sources are necessary to explain the light curve (LC), with each corresponding to a distinct peak. The first peak is powered by an expanding blackbody with a power-law luminosity, suggesting shock cooling by circumstellar material (CSM). Subsequent LC evolution is powered by a double radioactive decay model, consistent with two sources of photons diffusing through optically thick ejecta. From the LC, we derive an ejecta mass and ⁵⁶Ni mass of $\sim 0.6 M_{\odot}$ and $\sim 0.09 M_{\odot}$. Spectroscopic modeling $\sim 0.6 M_{\odot}$ of ejecta, and with well-mixed Fe-peak elements throughout. We discuss several physical origins for SN 2022oqm and find either a surprisingly massive white dwarf progenitor or a

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

²⁹ ISEF International Fellowship.

THE ASTROPHYSICAL JOURNAL, 972:194 (27pp), 2024 September 10

Table 1 SN 2022oqm and NGC 5875 (Host Galaxy) Properties					
Parameter	Value	References			
R.A.	15 ^h 09 ^m 08 ^s 21	(2)			
Decl.	+52°32′05″ 14	(2)			
Redshift	0.012	(4)			
Distance Modulus	33.575	(4)			
Milky Way $E[B - V]$	0.016	(3)			
Explosion Time	MJD = 59770-59771	This Work			
-	2022 Jul 10-11				
Time of Peak 1	MJD = 59771	This Work			
	2022 Jul 11				
Time of Peak 2	MJD = 59775	This Work			
	2022 Jul 13-17				
Time of Peak 3	MJD = 59785	This Work			
	2022 Jul 18-25				
Host R.A.	+15 ^h 09 ^m 13 ^s .16	(1)			
Host decl.	52°31′42″ 40	(1)			
Host-SN Offset	50."6 (13.1 kpc)	This Work			

References. (1) Abazajian et al. (2005); (2) Sollerman et al. (2022); (3) Schlafly & Finkbeiner (2011); (4) van Driel et al. (2016).

broader CaRT population. In Section 7, we explore possible progenitor scenarios of SN 2022oqm. We discuss our results in Section 8 and conclude in Section 9. We assume a standard Λ CDM cosmology throughout ($H_0 = 67.8 \text{ km s}^{-1} \text{ Mpc}^{-1}$, $\Omega_M = 0.31$, $\Omega_{\Lambda} = 0.69$; Planck Collaboration et al. 2016).

2. Observations

SN 2022oqm was reported to the Transient Name Server with a discovery date of 2022 July 11 04:33 UT (MJD = 59771.69) and the last nondetection a day earlier on 2022 July 10 06:14 UT (MJD = 59770.75) by Sollerman et al. (2022), and initially classified as a SN I (Zimmerman et al. 2022). Immediately after detection, a clear shock-like UV excess had become apparent, and the community began to follow the evolution of SN 2022oqm. After discovery, SN 2022oqm was next classified as an SN Ic (D. Perley et al. 2022). Its observed properties are summarized in Table 1. SN 2022oqm was found offset by 50".6 (13.1 kpc) from the center of NGC 5875, an extended spiral galaxy at 53.5 ± 1 Mpc (Tully et al. 2013).

2.1. Photometry

A log of all photometry presented in this article is provided in Table 7.

2.1.1. Pan-STARRS

SN 2022oqm was observed with the Pan-STARRS telescope (PS1/2; Kaiser et al. 2002; Chambers et al. 2017) on 2022 September 8 in rz bands through the Young Supernova Experiment (YSE; Jones et al. 2021). Data storage/visualization and follow-up coordination was done through the YSE-PZ Target and Observation Manager (Coulter et al. 2022, 2023). The YSE photometric pipeline is based on photpipe (Rest et al. 2005), which relies on calibrations from Magnier et al. (2020) and Waters et al. (2020). Each image template was taken from stacked PS1 exposures, with most of the input data from the PS1 3π survey. All images and templates were resampled and astrometrically aligned to match a skycell in the PS1 sky tessellation. An

image zero point is determined by comparing point-spreadfunction (PSF) photometry of the stars to updated stellar catalogs of PS1 observations (Flewelling et al. 2020). The PS1 templates are convolved with a three-Gaussian kernel to match the PSF of the nightly images, and the convolved templates are subtracted from the nightly images with HOTPANTS (Becker 2015). Finally, a flux-weighted centroid is found for the position of the SN in each image and PSF photometry is performed using "forced photometry": the centroid of the PSF is forced to be at the SN position. The nightly zero point is applied to the photometry to determine the brightness of the SN for that epoch.

2.1.2. Las Cumbres Observatory Global Supernova Experiment

The Las Cumbres Observatory (LCO) triggered observations through the Global Supernova Experiment on SN 2022oqm within two weeks prior to the peak. Observations were conducted by the Sinistro 1 m telescopes from Las Cumbres Observatory. Data were recorded in the *B*, *g*, *V*, *r*, and *i* bands covering 11 days prepeak and 52 days postpeak. We reduced the photometry in house using the lcogtsnpipe³⁰ infrastructure (Valenti et al. 2016), which uses the PSF fitting procedure to extract target magnitudes. We calibrated photometry in the *B* and *V* bands using Vega magnitudes in the Landolt catalog (Landolt 1992). We calibrated photometry in the g, *r*, and *i* bands to AB magnitudes using the Sloan Digital Sky Survey (SDSS) catalog (Smith et al. 2002).

2.1.3. Thacher, Lulin, LCO, Nickel

We observed SN 2022oqm with the Thacher 0.7 m telescope (Swift et al. 2022) in griz bands from 2022 July 12 to September 9, with the Lulin 1 m telescope in griz bands from 2022 August 9 to 30, and with the LCO 1 m telescopes and Sinistro imagers in ugri bands from 2022 August 2 to 10. All images were reduced in photpipe (Rest et al. 2005) with bias, flat, and dark frames obtained in the same instrumental configuration as our science images. We regridded each frame to a common pixel scale and field center with SWarp (Bertin 2010) and performed pointspread function photometry with a custom version of DoPhot (Schechter et al. 1993). All photometry was calibrated using standard stars from the PS1 3π DR2 catalog (Flewelling et al. 2020) observed in the same field as SN 2022oqm. We subtracted pre-explosion griz template images from PS1 using hotpants (Becker 2015) and performed forced photometry at the site of SN 2022oqm in the subtracted images, which is the final photometry presented here.

2.1.4. Konkoly, Baja Observatories

Photometric observations of SN 2022oqm were collected from Piszkesteto Station of Konkoly Observatory and from Baja Observatory of University of Szeged, Hungary. Both sites are equipped with a robotic 0.8 m Ritchey–Chretien–Nasmyth telescope, manufactured by ASA AstroSysteme GmbH, Austria. Photometry was performed by applying a backilluminated, liquid-cooled, 2048 × 2048 FLI ProLine PL230 CCD camera through Johnson *B*, *V*, and Sloan g', r', i' and z' bands. Image reductions were done by custom-made IRAF³¹ and fitsh³² scripts. Photometry of the SN was calibrated via

³⁰ https://github.com/LCOGT/lcogtsnpipe

³¹ https://iraf-community.github.io/

³² https://fitsh.net/

A&A, 692, A48 (2024) https://doi.org/10.1051/0004-6361/202452311 © The Authors 2024

Astronomy Astrophysics

A wiggling filamentary jet at the origin of the blazar multi-wavelength behaviour

C. M. Raiteri^{1,*}, M. Villata¹, M. I. Carnerero¹, S. O. Kurtanidze², D. O. Mirzaqulov³, E. Benítez⁴, G. Bonnoli⁵, D. Carosati^{6,7}, J. A. Acosta-Pulido⁸, I. Agudo⁹, T. S. Andreeva^{10,11}, G. Apolonio¹²,
R. Bachev¹³, G. A. Borman¹⁴, V. Bozhilov¹⁵, L. F. Brown¹⁶, W. Carbonell¹⁶, C. Casadio¹⁷, W. P. Chen¹⁸, G. Damljanovic¹⁹, S. A. Ehgamberdiev^{3,20}, D. Elsaesser^{21,22}, J. Escudero⁹, M. Feige²¹, A. Fuentes⁹, D. Gabellini²³, K. Gazeas²⁴, M. Giroletti²⁵, T. S. Grishina²⁶, A. C. Gupta^{27,28}, M. A. Gurwell²⁹, V. A. Hagen-Thorn²⁶, G. M. Hamed³⁰, D. Hiriart³¹, M. Hodges³², R. Z. Ivanidze², D. V. Ivanov^{10,11}, M. D. Joner¹², S. G. Jorstad^{33,26}, M. D. Jovanovic¹⁹, S. Kiehlmann^{17,34}, G. N. Kimeridze², E. N. Kopatskaya²⁶, Yu. A. Kovalev^{35,36}, Y. Y. Kovalev³⁷, O. M. Kurtanidze^{2,38}, A. Kurtenkov¹³, E. G. Larionova²⁶, A. Lessing²¹, H. C. Lin¹⁸, J. M. López³⁹, C. Lorey²¹, J. Ludwig²¹, N. Marchili²⁵, M. G. Mingaliev^{43,44,10}, A. Modaressi¹⁶, D. A. Morozova²⁶, F. Mortari²³, T. V. Mufakharov^{43,44,36}, I. Myserlis^{45,37}, M. G. Nikolashvili², T. J. Pearson³², A. V. Popkov^{46,35,36}, I. A. Rahimov^{10,11}, A. C. S. Readhead³², D. Reinhart²¹, R. Reeves⁴⁷, S. Righini²⁵, F. D. Romanov^{48,49,50}, S. S. Savchenko^{26,51}, E. Semkov¹³, E. V. Shishkina²⁶, L. A. Sigua², L. Slavcheva-Mihova¹³, Yu. V. Sotnikova^{43,44,36}, R. Steineke²¹, M. Stojanovic¹⁹, A. Strigachev¹³, A. Takey³⁰, E. Traianou⁹, Yu. V. Troitskaya²⁶, I. S. Troitskiy²⁶, A. L. Tsai^{18,52}, A. Valcheva¹⁵, A. A. Vasilyev²⁶, G. Verna⁴⁰, O. Vince¹⁹, K. Vrontaki²⁴, Z. R. Weaver³³, J. Webb³³, Q. X. Yuldoshev³⁰, E. Zaharieva¹⁵, and A. V. Zhovtan¹⁴

(Affiliations can be found after the references)

Received 19 September 2024 / Accepted 18 October 2024

ABSTRACT

Context. Blazars are beamed active galactic nuclei (AGNs) known for their strong multi-wavelength variability on timescales ranging from years down to minutes. Many different models have been proposed to explain this variability.

Aims. We aim to investigate the suitability of the twisting jet model presented in previous works to explain the multi-wavelength behaviour of BL Lacertae, the prototype of one of the blazar classes. According to this model, the jet is inhomogeneous, curved, and twisting, and the long-term variability is due to changes in the Doppler factor due to variations in the orientation of the jet-emitting regions.

Methods. We analysed optical data of the source obtained during monitoring campaigns organised by the Whole Earth Blazar Telescope (WEBT) in 2019–2022, together with radio data from the WEBT and other teams, and γ -ray data from the *Fermi* satellite. In this period, BL Lacertae underwent an extraordinary activity phase, reaching its historical optical and γ -ray brightness maxima. *Results.* The application of the twisting jet model to the source light curves allows us to infer the wiggling motion of the optical, radio, and γ -ray

Hesults. The application of the twisting jet model to the source light curves allows us to infer the wiggling motion of the optical, radio, and γ -ray jet-emitting regions. The optical-radio correlation shows that the changes in the radio viewing angle follow those in the optical viewing angle by about 120 days, and it suggests that the jet is composed of plasma filaments, which is in agreement with some radio high-resolution observations of other sources. The γ -ray emitting region is found to be co-spatial with the optical one, and the analysis of the γ -optical correlation is consistent with both the geometric interpretation and a synchrotron self-Compton (SSC) origin of the high-energy photons.

Conclusions. We propose a geometric scenario where the jet is made up of a pair of emitting plasma filaments in a sort of double-helix curved rotating structure, whose wiggling motion produces changes in the Doppler beaming and can thus explain the observed multi-wavelength long-term variability.

Key words. galaxies: active - BL Lacertae objects: general - BL Lacertae objects: individual: BL Lacertae - galaxies: jets

1. Introduction

Blazars are peculiar active galactic nuclei (AGNs) that are characterised by a relativistic jet pointing at a small angle with respect to the line of sight. This results in Doppler beaming of the emitted radiation, with consequent flux enhancement and shortening of the variability timescales; blazars thus appear as strongly variable objects at all wavelengths on a variety of timescales.

* Corresponding author; claudia.raiteri@inaf.it

Many scenarios have been proposed to explain the unpredictable blazar variability. They can be categorised into two main classes. The first class involves intrinsic energetic processes occurring inside the jet, such as shock waves propagating in the jet (e.g. Marscher & Gear 1985), magnetic reconnection (e.g. Sironi et al. 2015; Petropoulou et al. 2018; Bodo et al. 2021), and turbulence (e.g. Marscher 2014). The second class involves changes in beaming due to geometric mechanisms, such as orbital motion in a binary black hole system (e.g. Lehto & Valtonen 1996; Villata et al. 1998) or jet precession

A48, page 1 of 14

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.

Raiteri, C. M., et al.: A&A, 692, A48 (2024)

Appendix A: Optical and radio datasets

 Table A.1. Details on the 43 optical datasets contributing to this paper.

Dataset	Country	Diameter (cm)	Symbol	Colour	Ν
Abastumani	Georgia	70	\diamond	dark green	2942
Abbey Ridge	Canada	35	⊳	orange	56
Aoyama Gakuin	Japan	35		cyan	61
ARIES	India	104		blue	15
ARIES	India	130		green	28
Athens ^a	Greece	40	\diamond	cyan	2268
Beli Brezi	Bulgaria	20	*	blue	148
Belogradchik	Bulgaria	60	+	cyan	94
Burke-Gaffney	Canada	61	⊳	dark green	345
Calar Alto	Spain	220	+	yellow	2
Catania (Arena)	Italy	20	×	cyan	147
Catania (GAC)	Italy	25	Δ	cyan	171
Catania (SLN)	Italy	91	Δ	magenta	230
Connecticut	US	51	*	black	458
Crimean (AP7p)	Crimea	70	0	magenta	326
Crimean (ST-7)	Crimea	70	+	magenta	51
Crimean (ST-7; pol)	Crimea	70	×	magenta	1662
Felizzano	Italy	20	*	magenta	14
GiaGa	Italy	36	*	black	37
Haleakala (LCO ^b)	US	40	+	blue	68
Hans Haffner	Germany	50	0	red	1142
Hypatia	Italy	25	\diamond	red	4991
Kitt Peak (SARA)	US	90	\diamond	violet	63
Kottamia	Egypt	188	Δ	black	23
Lowell (LDT)	ŬŠ	430	0	magenta	16
Lulin (SLT)	Taiwan	40	Х	blue	1754
McDonald (LCO ^b)	US	40	Δ	blue	96
Montarrenti	Italy	53	0	dark green	120
Monte San Lorenzo	Italy	53	0	green	165
Mt. Maidanak	Uzbekistan	60	\diamond	green	1492
New Mexico Skies	US	43		green	1
Osaka Kyoiku	Japan	51		orange	2061
Perkins ^b	US	180	ō	blue	1101
Pulkovo	Russia	65	×	cvan	23
Roque (IKT)	Spain	100	ô	green	139
Roque (NOT: e2v)	Spain	256	+	green	46
Rozhen	Bulgaria	200		red	131
Rozhen	Bulgaria	50/70	$\overline{\diamond}$	orange	184
SAI Crimean	Crimea	60	ò	orange	455
San Pedro Martir	Mexico	84	0	black	539
Seveso	Italy	30	+	violet	226
Siena	Italy	30	\diamond	blue	2389
Sierra Nevada	Spain	90	*	black	413
Sirio	Italy	25	ò	dark green	2
Skinakas	Greece	130	×	black	617
Skinakas (Robonol)	Greece	130	$\hat{\diamond}$	black	5
St Petersburg	Russia	40	* +	orange	1073
Stocker	IICA	61	\diamond	black	01
Svetloe	Russia	40	×	black	5
Teide (IAC80)	Snain	80	*	oreen	224
Teide (I CO ^b)	Spain	40	.L	black	08
Teide (STELL A_I)	Spain	100	+	violet	20
Tijarafe	Spain	40	*	red	4241
Vidojevica ^c	Serbia	1/0		black	757
Vidojevica ^c	Serbia	60		black	120
West Mountain	US	91	^	magenta	985
Wild Boar	Italv	24	\wedge	green	634
		<i>-</i> ·		5.0011	001

Notes. ^a University of Athens Observatory (UOAO); ^b Las Cumbres Observatory global telescope network; ^c Astronomical Station Vidojevica

A48, page 12 of 14

Available online at www.sciencedirect.com

ScienceDirect

Advances in Space Research 73 (2024) 663-671

ADVANCES IN SPACE RESEARCH (*a COSPAR publication*) www.elsevier.com/locate/asr

Airglow observed by a full-band imager together with multi-instruments in Taiwan during nighttime of 1 November 2021

Jann-Yenq Liu^{a,b,c}, Panthalingal Krishnanunni Rajesh^d, Yi-An Liao^b, Jaroslav Chum^e, Kai-Wen Kan^b, I-Te Lee^{b,f}

^a Center for Astronautical Physics and Engineering, National Central University, Taoyuan, Taiwan
 ^b Department of Space Science and Engineering, National Central University, Taoyuan, Taiwan
 ^c Center for Space and Remote Sensing Research, National Central University, Taoyuan, Taiwan
 ^d Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan

^e Institute of Atmospheric Physics, Czech Academy of Sciences, Prague, Czech Republic ^f Central Weather Bureau, Taipei, Taiwan

Received 24 May 2023; received in revised form 11 August 2023; accepted 5 September 2023 Available online 9 September 2023

Abstract

This study demonstrates an innovative approach of using a full-band chromatic all-sky imager, routinely operational for monitoring sky conditions at Lulin observatory (23.5°N, 120.9°E, 12.5° N magnetic latitude), Taiwan, to investigate equatorial plasma bubbles (EPBs). Distinct north-south aligned EPB depletions are identified by decomposing the color-scale images to respective red (centered at 630 nm) and green (520 nm) channels, where blue channel (470 nm) helps for background suppression. The intense EPBs, drifting eastwards at 60–100 m/s velocity, are also associated with reduced total electron content (TEC) values; increased ROTI (rate of TEC index); remarkable range spread-F; and prominent fluctuations in Doppler frequency shifts as well as FORMOSAT-7/COSMIC-2 electron density/S4 scintillation profiles. The results show that a full-band chromatic imager offers a cost-effective alternative to investigate the EPBs usually detected in OI 630.0 and 557.7 nm airglow emissions.

Keywords: Airglow; All-sky Imager; TEC; ROTI; Doppler shift; FORMOSAT-7/COSMIC; Equatorial plasma bubble

1. Introduction

All-sky imaging of airglow depletions with 630.0 nm and 557.7 nm narrowband interference filters has been widely employed to study equatorial plasma bubbles (EPBs) associated with Equatorial Spread-F (ESF) irregularities (Weber et al., 1978; Mendillo and Baumgardner, 1982; Taylor et al., 1997; Fagundes et al., 1997, 1999; Sahai et al., 2000; Kelley et al., 2002; Makela et al., 2004, 2010; Makela, 2006; Mendillo et al., 2005; Rajesh et al., 2007; Liu et al., 2011; Shiokawa et al., 2015; Fukushima et al.,

https://doi.org/10.1016/j.asr.2023.09.013 0273-1177/© 2023 COSPAR. Published by Elsevier B.V. All rights reserved.

2015; Okoh et al., 2017; Ghodpage et al., 2021; Wrasse et al., 2021). The irregularities are generated at the magnetic equator when suitable conditions exist at the F-region bottom-side in the post-sunset period and manifest themselves as dark bands of intensity depletions in the airglow images taken from equatorial or low-latitude stations (Weber et al., 1978; Mendillo et al., 2005). The depletions are aligned along magnetic field lines, and usually drift eastward with the ambient plasma velocity (Mendillo and Baumgardner, 1982; Sinha et al., 2001; Martinis et al., 2003; Pimenta et al., 2003; Sarudin et al., 2020). The regions corresponding to the depleted airglow intensity also exhibit reduced total electron content (TEC) values,

E-mail address: jyliu@jupiter.ss.ncu.edu.tw (J.-Y. Liu)

II 研究報告

中文摘要

利用鹿林天文台全波段分色全天影像儀 (all-sky imager, ASI),配合地面全球定位系 統 (Global Positioning System, GPS)接收機、高頻都卜勒探测系統 (HF Doppler sounding system, DSS)、電離層探測儀 (Ionosonde),以及福爾摩沙衛星七號 (FORMOSAT-7/COSMIC-2, F7/C2) 掩星多種儀器,觀察 2021年11月01日台灣地區大氯暉光亮暗帶 與其伴隨之電漿泡。當全天影像儀觀測電離層大氯暉光經緯二維結構之同時,GPS接收 機紀錄全電子含量(Total Electron Content, TEC)和 TEC 擾動指數(Rate of TEC Index, ROTI);DSS 監測電離層都卜勒頻移;Ionosonde 觀察電離圖;F7/C2 檯星觀測電子濃度、 全電子含量及閃爍指數廓線。結果顯示大氯暉光亮暗帶會分別對應 TEC (ROTI) 之增減 (弱強)。暉光暗帶區域,都卜勒頻移劇烈頻散同時先增加後逐漸減少;電離圖出現虛高 散狀 F 層。鹿林天文台全波段分色全天影像清楚顯示 2021年11月01日夜間 2000 LT 至次日 0200 LT 之暉光亮暗帶東向漂移速度為 60-100 m/s。此外,F7/C2 掩星觀測顯示 於暗帶地區,電子濃度與全電子含量(閃爍指數)會急遽減少(增強)。整體而言,暉光暗帶 是為電裝濃度和全電子含量減少區域,伴生之電裝泡會引發都卜勒頻移和電離圖虛高嚴 重擾亂,進而引發電波強烈相位擾動和振幅閃爍。

i

NATIONAL CENTRAL UNIVERSITY

GRADUATE INSTITUTE OF ASTRONOMY

MASTER THESIS

Taxonomic Classification and Orbital Dynamics of Near-Earth Asteroids

Author: Yuli CHENG Supervisors: Wing-Huen IP

6/2023

Copyright[©] Yuli CHENG 2023

Taxonamic Classification and Orbital Dynamics of Near-Earth Asteroids

Abstract

Yuli Cheng

Graduate Institute of Astronomy, National Central University

We aim to classify the dataset of Lulin photometry observations from 2010 to the present. Prior to this study, we utilized Principle Component Analysis and applied a color-color index to catalog near-Earth Asteroids (NEAs). However, distinguishing between the relative reflectance of S-type and Q-type NEAs proved challenging due to the similarity in their color values. To enhance the accuracy of our predictions, we incorporated machine learning techniques. We employed several algorithms, including decision trees, random forests, logistic regression, support vector machines, and neural networks.

ix

摘要

在2022年,我們建立了鹿林天文台的 RoLIFE (Robotic Lulin Lunar Impact Flash tElescope) 觀測系統。本研究介紹了我們的觀測系統。由於月球的大氣 層非常稀薄,即使是小型流星體撞擊月球表面也會產生短暫的閃光。

研究目的是捕捉並記錄月閃事件,計算其發光能,估算流星體的撞擊動能, 並進一步解析其物理機制。我們計算了閃光的視星等,假設閃光遵循黑體輻射定 律,通過R波段和I波段的觀測與分析獲得閃光溫度,估算其動能和質量、大小 以及發光效率範圍,這代表了流星體動能在撞擊過程中轉化為可見光的比例。

在 2023 年 2 月至 2024 年 4 月期間,我們進行了系統且長期的觀測,總計 42 個夜晚的有效觀測,共分析了 4332 分鐘的影像數據,並觀測到了7 個月閃事 件。月閃溫度的計算使用了 NELIOTA 的數據,而發光效率則基於鹿林天文台在 2018 年雙子座流星雨期間觀測得到的數據。我們通過影像分析確定了撞擊閃光 的位置與時間,並計算了月閃事件的發光能,推算出流星體的物理參數。研究結 果顯示,月閃事件的溫度範圍主要集中在 2000K 到 3500K 之間。發光效率的計算 結果與以往的研究結果相吻合,驗證了我們觀測系統的可靠性。

RoLIFE 是台灣大學月球調查計畫 (TULIP) 的一部分,其科學目的是為太空 任務提供地面觀測,例如歐洲太空總署(ESA)的 LUMIO 立方衛星任務在內的空間 任務。我們的目標是向月球科學家和結構工程師提供流星體撞擊月球表面的物理 參數。這些參數對於月球軌道飛行器、月球著陸器和月球基地的建造至關重要。 工程師需要了解流星體撞擊月球表面的位置、頻率和動量,以及溫度變化和這些 撞擊形成的隕石坑的大小。這些資訊將有助於評估工程設施的安全性和耐用性。

33

i

GLAST-AGILE Support Program (GASP) project

Tsai, An-Li & Chen, Weng-Ping

This project

Blazars are known as one type of AGNs with strong relativistic jets. They have rapid and large-amplitude flux variability from radio to γ -ray with time-scales from hours to years.

The Whole Earth Blazar Telescope (WEBT) has been organizing the GLAST-AGILE Support Program (GASP) to become the WEBT-GASP consortium which the WEBT-GASP consortium provides data at optical, near-infrared, and radio with high-temporal-density monitoring of blazars to be compared with the UV and X-ray data from Swift, and the γ -ray data from the AGILE and GLAST satellites. The aim is to understand the connection among emissions at different frequencies and to derive information on the emitting jet.

Our NCU Lulin 45 cm Telescope, a member of the WEBT-GASP consortium, has been a part of the project for years, and will continue to contribute to. After obtain data, we will calibrate the Lulin data and provide image and photometric data for further studies.

Lulin observations in 2024

In 2024, Lulin SLT 40 cm telescope observed 26 blazars. The number of total fits files obtained by SLT in 2024 is 4842. The number of fits observed and the ratio of available data for each target are listed in Table 1.

The scheduled days for GASP observation is 320. Only 194 days have executed the observation, and 126 days have not executed the observation due to bad weather condition. The observation rate is about 60.6%. The number of days observable and the ratio of available days are listed in Table 2.

The total on-source time (not including BIAS, DARK, FLAT) of GASP project in 2024 is 242.1 hours, and that in each month are listed in Table 3.

Lulin Annual Report 2024

GASP project

Table 1 Number of fits files obtained by the SLT in 2024

Target	Number of fits obtained
3C273	116
3C279	87
3C345	155
3C371	228
3C454-3	235
3C66A	293
4C29-45	160
4C38-41	163
4C51-37	172
4C71-07	236
AO0235 + 16	245
CTA102	237
DA406	151
ES2344 + 514	279
L-Lacertae	255
Mkn421	165
Mkn501	154
OJ248	146
OJ287	130
OJ49	151
ON231	148
PKS1510-08	102
PKS0735 + 17	190
PKS2155-304	165
S4 0954 + 65	196
S5 0716 $+71$	271
Total	4842

2

Lulin Annual Report 2024

GASP project

Month	Days scheduled	Days observable	Days not observable	ratio of available days
2024-01	29	22	7	75.9%
2024-02	26	20	6	76.9%
2024-03	28	20	8	71.4%
2024-04	26	13	13	50.0%
2024-05	29	9	20	31.0%
2024-06	25	8	17	32.0%
2024-07	28	22	6	78.6%
2024-08	30	20	10	66.7%
2024-09	23	15	8	65.2%
2024-10	21	9	13	42.9%
2024-11	27	19	8	70.4%
2024-12	28	18	10	64.3%
Total	320	194	126	60.6%

Table 2 Days observable and not observable at the SLT in 2024

Table 3 On-source time (not including BIAS, DARK, FLAT) of GASP targets in each month in 2024 from the SLT $\,$

Month	Number of fits	On-source time (hours)
2024-01	532	26.6
2024-02	547	27.35
2024-03	507	25.9
2024-04	235	25.35
2024-05	184	9.2
2024-06	61	3.05
2024-07	733	6.65
2024-08	620	31.0
2024-09	444	22.2
2024-10	243	19.5
2024-11	440	22.0
2024-12	296	14.8
Total	4842	242.1

Lulin Annual Report 2024

GASP project

Paper published in 2024

- Raiteri, C. M., Villata, M., Carnerero, M. I., et al. (including **Chen**, **Wen-Ping** and **Tsai**, **A.-L.**), "A wiggling filamentary jet at the origin of the blazar multi-wavelength behaviour", *A&A*, Vol.692, id.A48 (2024)
- Otero-Santos, J., Raiteri, C. M., Acosta-Pulido, J. A., et al. (including Chen, Wen-Ping and Tsai, A.-L.), "Optical variability of the blazar 3C 371: From minute to year timescales", A&A, Vol.686, id.A228 (2024)
- MAGIC Collaboration, Abe, H., Abe, S., et al. (including Chen, Wen-Ping and Tsai, A.-L.), "Multi-year characterisation of the broad-band emission from the intermittent extreme BL Lac 1ES 2344+514", A&A, Vol.682, id.A114 (2024)

YOUNG SUPERNOVA EXPERIMENT

Yen-Chen Pan

Graduate Institute of Astronomy, National Central University

1. Abstract

Transient surveys are now consistently finding transients within hours of explosion. These observations provide rare opportunities to investigate the explosion and progenitor system, and probe the circumstellar environment surrounding the SN. Interaction with a potential companion star is also visible in the first hours. We have started an international collaboration to detect extremely young explosions since 2019. Using a novel technique to combine our data with public data, we will clearly identify interesting targets as they rise, detecting transients within hours of explosion. The Lulin observatory is part of the collaboration and plays a critical role in constraining the properties of these young transients. Here I will briefly describe the program and report the current status.

2. Description of the Program

Early observations of transients place unique constraints on their progenitor systems and explosion mechanisms. To increase the number of transients detected within hours of explosion, we are starting a new survey, the Young Supernova Experiment (YSE). YSE is the collaboration between DARK (University of Copenhagen), UC Santa Cruz, University of Illinois, University of Toronto, and Northwestern University. YSE will survey $\sim 1000 \text{ deg}^2$ of equatorial sky on a 3-day cadence (in griz) using the Pan-STARRS (PS) telescopes. We will also shadow other public transient surveys, such as ASASSN, ATLAS and ZTF, which can improve our detection and selection of SNe within hours of explosion. Because of different observatory longitudes, there will be a lag of a few hours between the public survey and PS observations. During this time, some transients will explode and rise to a point of being detectable, and more will be barely detectable in the public surveys and rise considerably in a few hours. When PS detects a new transient, we will immediately query these public surveys to determine if the transient is young. With the expected cadence of PS observations, our detected transients will be 3 days old at most, and we expect to discover ~ 2 transients within hours of explosion per month.

We ask for Lulin ToO observations to obtain the multi-color photometry of YSE transients, and to watch the objects quickly develop. Being another few hours lag from the PS telescope, the location of Lulin observatory will be critical to constrain the extremely young transients discovered by YSE. Any young transients detected by PS telescope can be monitored by Lulin within hours, which will greatly reduce the cadence of our photometric observations. This is crucial given the light-curve evolution is expected to be dramatic within the first few days after explosion. The early Lulin observations will play an important role in catching this fast evolution and provide better constrain on the transient age.

3. Program Status and List of Publications

Currently the YSE is still active, and we have observed ~ 200 transients for this program since 2020 with LOT. Many of these events are extremely interesting. Several papers have been published within our collaboration using the LOT data (see below for a list of publications).

1. Yadavalli et al., "SN 2022oqm: A Bright and Multipeaked Calcium-rich Transient", 2025, ApJ, 972, 194

2. Jacobson-Galan et al., "SN 2024ggi in NGC 3621: Rising Ionization in a Nearby, Circumstellarmaterial-interacting Type II Supernova", 2025, ApJ, 972, 177

3. Wang et al., "Flight of the Bumblebee: the Early Excess Flux of Type Ia Supernova 2023bee Revealed by TESS, Swift, and Young Supernova Experiment Observations", 2024, ApJ, 962, 17

4. Kilpatrick et al., "Type II-P supernova progenitor star initial masses and SN 2020jfo: direct detection, light-curve properties, nebular spectroscopy, and local environment", 2023, ApJ, 524, 2

5. Jacobson-Galan et al., "SN 2023ixf in Messier 101: Photo-ionization of Dense, Close-in Circumstellar Material in a Nearby Type II Supernova", 2023, ApJ, 954, 2

6. Karthik et al., "SN 2022oqm: A Bright and Multi-peaked Calcium-rich Transient", accepted for publication in ApJ

7. Davis et al., "SN 2022ann: A type Icn supernova from a dwarf galaxy that reveals helium in its circumstellar environment", 2023, MNRAS, 523, 2

8. Tinyanont et al., "Supernova 2020wnt: An Atypical Superluminous Supernova with a Hidden Central Engine", 2023, ApJ, 951, 34

9. Dimitriadis et al., "A Super-Chandrasekhar Supernova Caused by the Merger of Carbon/Oxygen White Dwarf Stars", 2022, ApJ, 927, 78

10. Hosseinzadeh et al., "Weak Mass Loss from the Red Supergiant Progenitor of the Type II SN 2021yja", 2022, ApJ, 935, 31

11. Jacobson-Galan et al., "Final Moments I: Precursor Emission, Envelope Inflation, and Enhanced Mass loss Preceding the Luminous Type II Supernova 2020tlf", 2021, ApJ, 924, 15

12. Jencson et al., "AT2019qyl in NGC300: Early Outflow Collisions for a Very Fast Nova in a Symbiotic Binary", 2021, ApJ, 920, 127

Kinder (kilonova finder) project

PI: Ting-Wan Chen (NCU)

Collbrators: S. Yang (HNAS), A. Aryan, C.-C. Ngeow, Y. J. Yang, Y.-H. Lee, A. Sankar. K, W.-J. Hou, H.-Y. Hsiao, M.-H. Lee, Y.-C. Pan, C.-H. Lai, C.-S. Lin, H.-C. Lin, J.-K. Guo (all NCU), A. K. H. Kong (NTHU), J. Gillanders (Oxford), S. J. Smartt (Oxford/QUB), L. L. Fan, Z. N. Wang, G. H. Sun (all HNAS), H.-W. Lin (UMich), H. F. Stevance, S. Srivastav, L. Rhodes (all Oxford), M. Nicholl, M. Fulton, T. Moore, K. W. Smith, C. Angus, A. Aamer (all QUB), A. Schultz and M. Huber (both IfA, Hawaii).

Project overview:

Kinder (kilonova finder) project is a volume-limited survey aiming to find a kilonova through a complete search for nearby transients found in optical surveys. This is independent of gravitational wave (GW) detections, and is therefore named "without GW triggers". The current GW detectors are only online for certain periods of time because the instruments require upgrades and examination. The LIGO-Virgo O4 run observes continuing until 1 April 2025 15:00 UTC. Maintenance/commissioning break from 1 April 2025 at 15:00 UTC to 4 June 2025 at 15:00 UTC. Hence, finding kilonovae without GW triggers is a crucial strategy for the completion of a kilonova rate estimate.

We use 40cm-SLT with g', r, and i' filters to follow up targets occurring in the local Universe within 100 Mpc of the Asteroid Terrestrial-impact Last Alert System (ATLAS) and take 1-3 epochs of observations to fill any remaining parts of the light curves in order to track their photometric evolution within a daily cadence. For those objects that are rapidly declining in optical bands (and slowly fading or re-brightening in near-infrared bands), as is the unique feature of kilonovae, we then issue circular alerts to attract the attention of the community. We take a spectroscopic classification through collaborations with the advanced (extended) Public ESO Spectroscopic Survey of Transient Objects (ePESSTO+) and the Electromagnetic Counterparts of Gravitational Wave sources at the Very Large Telescope (ENGRAVE) projects, in which we have access to all data and use those facilities for observations. In addition, because Lulin has a unique geographical location, we can first observe and quickly follow kilonova candidates or other fast-evolving transients found by the Panoramic Survey Telescope and Rapid Response System (PanSTARRS) and ATLAS in Hawaii within the night.

Kinder applications to the Einstein Probe Fast X-ray transients:

The Einstein Probe satellite successfully launched in January 2024, has been dedicated to advancing time-domain high-energy (X-ray) astrophysics. We systematically use the 40cm-SLT and 1m-LOT telescopes at Lulin Observatory to search for optical counterparts to FXTs detected by the Einstein Probe. In an initial

sample of 42 FXTs, 11 events have shown strong evidence of association with gamma-ray bursts, five of the optical counterparts were firstly identified with Lulin Observations (e.g. Chen et al. 2024, GCN #35938). Additionally, events EP240315a and EP240801a exhibit characteristics consistent with jetted tidal disruption events (e.g. Gillanders et al. 2024). The study concludes that a significant fraction of FXTs detected by the Einstein Probe are likely connected to gamma-ray bursts or associated with relativistic jets. By leveraging the observing facilities at Lulin Observatory, the project aims to address some of the most recent mysteries in astronomy and astrophysics. Dr. Amar Aryan, a postdoctoral researcher at our GREAT lab is leading this study and LOT R09 research project: Optical Follow-up of the Einstein Probe Discovered Fast X-ray Transients (ToO).

Results:

In the year 2024, we did not find any kilonova. We have reported 45 GCN Circulars and submitted two first-authored papers (one got accepted and one published in 2025) and two co-authored papers.

A notable example is SN 2024ggi, one of the most nearby Type II SNe, discovered in NGC 3621 (6.6 Mpc) just a few hours after its explosion. We obtained the early observations of SN 2024ggi with Lulin Observatory using the 40cm SLT telescope, revealed a rapid 3.3-magnitude rise within 13.7 hours and a notable blueward colour evolution, while flash spectroscopy detected high-ionisation features. The detailed light curve modelling then constrained key parameters, suggesting an explosion energy of approximately 2×10^{51} erg, a mass-loss rate of around 10^{-3} M_{\odot}/yr (assuming a 10 km/s wind), and a confined CSM radius of about 6×10^{14} cm (implying a CSM mass of roughly 0.4 M_{\odot}). These findings offer concrete insights into the shock breakout process and the immediate interaction between the ejecta and circumstellar material.

We discovered the second optical counterpart (AT 2024gsa) to a fast X-ray transient (EP 240414a) from Einstein Probe using the Lulin one-meter telescope LOT (see figure 2). Located 27 kpc from its host at z = 0.4018, AT 2024gsa's light curve shows an initial decay, a rapid rebrightening (reaching Mr \approx –21 within 2 rest-frame days), and a later peak (Mi \approx –19 at \geq 16 days) consistent with a supernova emergence. Power-law fits indicate that the decays match GRB afterglow models, with refreshed shocks likely causing the rebrightening. These findings suggest high-redshift FXTs are predominantly linked to gamma-ray bursts, setting them apart from lower-redshift, lower-luminosity FXTs.

Figure 1. Multi-wavelength light curves of SN 2024ggi. Figure is taken from Chen et al. 2024.

Figure 2. LOT discovery image of AT 2024gsa, along with follow-up images obtained with Pan-STARRs1 (PS1) and Gemini. Also shown (bottom right) is an archival image of the field from the Dark Energy Survey Camera (DECam). Figure is taken from Srivastav & Chen & Gillanders et al. 2025.

Publications:

1. Discovery of the Optical and Radio Counterpart to the Fast X-Ray Transient EP 240315a

Gillanders, J. H.; Rhodes, L.; Srivastav, S.; Carotenuto, F.; Bright, J.; Huber, M. E.; Stevance, H. F.; Smartt, S. J.; Chambers, K. C.; **Chen, T. -W.**; Fender, R. ; Andersson, A.; Cooper, A. J.; Jonker, P. G.; Cowie, F. J.; de Boer, T. ; Erasmus, N.; Fulton, M. D.; Gao, H.; Herman, J. ; Lin, C. -C.; Lowe, T. ; Magnier, E. A.; Miao, H. -Y.; Minguez, P. ; Moore, T.; **Ngeow, C. -C.**; Nicholl, M.; **Pan, Y. -C.**; Pignata, G.; Rest, A. ; Sheng, X.; Smith, I. A.; Smith, K. W.; Tonry, J. L.; Wainscoat, R. J.; Weston, J. ; Yang, S. ; Young, D. R. The Astrophysical Journal Letters, 2024, Volume 969, Issue 1, id.L14, 12 pp.

2. Discovery and Extensive Follow-Up of SN 2024ggi, a nearby type IIP supernova in NGC 3621

Chen, Ting-Wan; Yang, Sheng ; Srivastav, Shubham; Moriya, Takashi J. ; Smartt, Stephen J. ; Rest, Sofia ; Rest, Armin ; Lin, Hsing Wen ; Miao, Hao-Yu ; Cheng, Yu-Chi ; Aryan, Amar ; Cheng, Chia-Yu ; Fraser, Morgan ; Huang, Li-Ching ; Lee, Meng-Han ; Lai, Cheng-Han ; Liu, Yu Hsuan ; Sankar. K, Aiswarya ; Smith, Ken W. ; Stevance, Heloise F. ; Wang, Ze-Ning ; Anderson, Joseph P.; Angus, Charlotte R. ; de Boer, Thomas ; Chambers, Kenneth; Duan, Hao-Yuan; Erasmus, Nicolas ; Gao, Hua ; Herman, Joanna ; Hou, Wei-Jie ; Hsiao, Hsiang-Yao ; Huber, Mark E. ; Lin, Chien-Cheng ; Lin, Hung-Chin ; Magnier, Eugene A. ; Kit Man, Ka ; Moore, Thomas ; Ngeow, Chow-Choong ; Nicholl, Matt ; Ou, Po-Sheng ; Pignata, Giuliano ; Shiau, Yu-Chien ; Silvester Sommer, Julian ; Tonry, John L. ; Wang, Xiao-Feng ; Young, David R.; Yeh, You-Ting ; Zhang, Jujia Accepted in the Astrophysical Journal

3. Identification of the Optical Counterpart of the Fast X-Ray Transient EP240414a

Srivastav, S.*; **Chen, T. -W.***; Gillanders, J. H.*; Rhodes, L.; Smartt, S. J.; Huber, M. E.; **Aryan, A.**; Yang, S.; Beri, A.; Cooper, A. J.; Nicholl, M.; Smith, K. W.; Stevance, H. F.; Carotenuto, F.; Chambers, K. C.; Aamer, A.; Angus, C. R.; Fulton, M. D.; Moore, T.; Smith, I. A.; Young, D. R.; de Boer, T.; Gao, H.; Lin, C. -C.; Lowe, T.; Magnier, E. A.; Minguez, P. ; **Pan, Y. -C.**; Wainscoat, R. J. (*: joint first author)

The Astrophysical Journal Letters, 2025, Volume 978, Issue 2, id.L21, 13 pp.

 EP240801a/XRF 240801B: An X-ray Flash Detected by the Einstein Probe and Implications of its Multiband Afterglow Jiang, Shuai-Qing ; Xu, Dong ; van Hoof, Agnes P. C. ; Lei, Wei-Hua ; Liu, Yuan ; Zhou, Hao ; Chen, Yong ; Fu, Shao-Yu ; Yang, Jun ; Liu, Xing ; Zhu, Zi-Pei ; Filippenko, Alexei V. ; Jonker, Peter G. ; Pozanenko, A. S. ; Gao, He ; Wu, Xue-Feng; Zhang, Bing; Lamb, Gavin P; De Pasquale, Massimiliano; Kobayashi, Shiho ; Bauer, Franz Erik ; Sun, Hui ; Pugliese, Giovanna ; An, Jie ; D'Elia, Valerio ; Fynbo, Johan P. U. ; Zheng, WeiKang ; Tirado, Alberto J. C. ; Yin, Yi-Han Iris ; Zou, Yuan-Chuan ; Deller, Adam T. ; Pankov, N. S. ; Volnova, A. A. ; Moskvitin, A. S. ; Spiridonova, O. I. ; Oparin, D. V. ; Rumyantsev, V. ; Burkhonov, O. A. ; Egamberdiyev, Sh. A. ; Kim, V. ; Krugov, M. ; Tatarnikov, A. M.; Inasaridze, R.; Levan, Andrew J.; Bjørn Malesani, Daniele; Ravasio, Maria E.; Quirola-Vásquez, Jonathan; van Dalen, Joyce N. D.; Sánchez-Sierras, Javi ; Mata Sánchez, Daniel ; Littlefair, Stuart P. ; Chacón, Jennifer A.; Torres, Manuel A. P.; Chrimes, Ashley A.; Sarin, Nikhil; Martin-Carrillo, Antonio ; Dhillon, Vik ; Yang, Yi ; Brink, Thomas G. ; Davies, Rebecca L.; Yang, Sheng; Aryan, Amar; Chen, Ting-Wan; Kong, Albert K. H.; Li, Wen-Xiong; Li, Rui-Zhi; Mao, Jirong; Pérez-García, Ignacio; Fernández-García, Emilio J.; Andrews, Moira; Farah, Joseph; Fan, Zhou; Padilla Gonzalez, Estefania ; Howell, D. Andrew ; Hartmann, Dieter ; Hu, Jing-Wei ; Jakobsson, Páll ; Li, Cheng-Kui ; Ling, Zhi-Xing ; McCully, Curtis ; Newsome, Megan ; Schneider, Benjamin ; Samaporn Tinyanont, Kaew ; Sun, Ning-Chen ; Terreran, Giacomo ; Tang, Qing-Wen ; Wang, Wen-Xin ; Xu, Jing-Jing ; Yuan, Wei-Min ; Zhang, Bin-Bin ; Zhao, Hai-Sheng ; Zhang, Juan eprint arXiv:2503.04306

Taiwan's participation in the ExoClock Project

Yen-Hsing (Julius) Lin (UCSD)

1. Introduction

Accurate ephemerides are important for all exoplanet sciences, particularly for planning large transmission spectroscopy surveys using telescopes like HST, JWST, and the upcoming Ariel Space Telescope. To enable efficient observation scheduling for Ariel, the ExoClock Project was established to maintain and refine ephemerides for over 450 transiting exoplanets through a global network of amateur and professional astronomers (Kokori et al. 2023).

Since 2021, the Taiwan Astronomical Observation Collaboration Platform

(**TOP**)¹ has been contributing to the ExoClock Project with partners from university (e.g., NTHU), high schools (e.g., KMSH, TCFSH), museums (e.g., Taipei Astronomical Museum), and private observatories across Taiwan. As of March 2025, over 160 observations have been accepted by the ExoClock Project. However, urban light pollution and telescope aperture limitations prevent observations of some challenging planets with shallow transit depths and faint host stars.

Figure 1. TOP ExoClock accumulated number of observations. Credit: Yen-Hsing Lin.

To this end, we applied for Lulin LOT time in the 2024B, 2024C, and 2025A semesters to observe challenging ExoClock targets requiring telescope apertures larger than 20 inches.

¹ TOP Offical website: <u>https://nthuobs.phys.nthu.edu.tw/top</u>

2. LOT observations

Over three semesters, we conducted six successful observations, with five submitted and accepted by ExoClock. Notably, the transit mid-times of three systems (K2-405b, NGTS-9b, K2-19b) showed significant deviations (> 20 minutes) from literature values, highlighting the importance of continuous monitoring. ExoClock has designated K2-405b and NGTS-9b as ALERT targets, encouraging further follow-up observations to refine their ephemerides.

Figure 2. The transit light curve (left column) and the O-C diagram (right column) of the three highlighted transit events. For more details on how to read these diagrams, please refers to ExoClock's website.

These observations, along with the upcoming observations in 2025A, will be summarized, analyzed by the ExoClock team, and published in an academic journal within the next few years.

34

Proceedings of the IMC, Redu, 2023

Systematic analysis of the Taiwan Meteor Detector System (TMDS)

Zhong-Yi Lin¹, Po-Chih Chang², Jim Lee³, Chen Yan-Ping⁴, and Hsin-Chang Chi⁵

¹Institute for Astronomy, National Central University, Taoyuan City 320317, Taiwan zylin@astro.ncu.edu.tw

² Department of Space Science & Engineering, National Central University, Taoyuan City 320317, Taiwan

³ Taipei Astronomical Museum, Taipei City 11101, Taiwan

⁴ Department of Physics, National Central University, Taoyuan City 320317, Taiwan

⁵ Department of Physics, National Dong Hwa University, Hualien 974301, Taiwan

Taiwan Meteor Detector System (TMDS) comprises five stations located in different areas around Taiwan. Each station employes at least two video cameras in two different directions to observe meteors. The scientific objectives are to study the physical and chemical properties of meteoroids, the modifications of the meteoroid properties during their flight in the solar system, and to constrain the physical and chemical properties of their parent body. Two D-Criteria metrics for parent body association were used. The radiant drift seems to be occurring in each meteor shower, but the average value of radiant is consistent with the IMO's. No outbursts were found from TMDS, especially in Perseids which had an outburst reported in 2021, probably due to the observational bias and bad weather. The D-criterion for each meteor shower might not be comparable to each other, implying the dispersion of the orbital elements, the radiants, and the nominal orbit of the parent comet. The orbital evolution analysis of the parent sources has to be investigated in more detail, especially for some long-period comets (e.q. C/1917 F1 Mellish) whose orbital parameters are inaccurate.

1 Introduction

2 Observations and Methodology

The annual meteor showers can provide information about regular meteor shower returns and possible activity that visual observers may detect and verify. Moreover, the magnitude distribution of the meteors directly translates into the population index or mass distribution index of the meteoroids which can give information as to how massive and frequent the particles strike the atmosphere. The large particles ranging from 0.1 mm to 1 cm could cause serious damage to the spacecraft. Additionally, the mass index can constrain models and test physical theories about the meteoroid complex in the Solar system (Wiegert et al., 2009).

Taiwan Meteor Detector System (TMDS) was reestablished in 2016. In the beginning, the data collection rate was very low due to few cameras and stations. The data acquired after 2018 was dramatically increasing because of the increasing number of cameras and stations and the coverage of the field of view. By 2023 the TMDS has eighteen cameras distributed at five different locations in Taiwan. Four of them added a diffraction grating for spectroscopy in order to study meteoroid composition. (Lin et al., 2020) has presented the preliminary results of the initial TMDS, especially in the Geminid meteor shower. According to increasing data sets, the statistical analysis of each meteor shower can be addressed in this paper. Except for the statistical analysis, the population and mass indices, and mass distribution are added and discussed in Lin et al. (submitted).

In comparison to (Lin et al., 2020), the instrumentation is similar but one more direction and station were added. All station employees utilize Watec 902H2 Ultimate with a 1/3" Lens, producing a field of view from 52 to 66 degrees. From 2018 to August 2023, successive operations of the TDMS have registered about one hundred forty thousand meteor trails, in which about thirty-two thousand pairs were recorded from more than two stations. In total, more than ten thousand individually measured orbits are identified. Among them, about 75% were identified as meteoroids belonging to the sporadic meteor shower. In this paper, we highlight the meteor showers that their parents had associated with comets or asteroids. The radiant, magnitude, and velocity distributions and orbital similarity functions $(D_H \text{ and } D_X)$ are present. Orbital similarity functions defined in the space of Keplerian coordinates are commonly used to find the origin of meteor streams and to investigate the common origin of two or more asteroids. The D_{SH} was the first D-criterion introduced by Southworth and Hawkins in 1963. (Jopek, 1993) proposed a new similarity function, the D_H criterion, which is the hybrid form of D_{SH} . Afterward, D_X introduced by (Rudawska, 2015) is a method combining an orbital similarity function with a geocentric similarity. It means that the geocentric parameters of the two meteors including the solar longitudes, right ascensions, declination, and geocentric velocities have been added for the estimation of the D-criterion. More details concerning their origins can be found in the cited papers.

Proceedings of the IMC, Redu, 2023

Results 3

3.1Quadrantids

The Quadrantid meteor shower is one of the strongest and most consistent showers of the year. The Quadrantids are produced when Earth passes through the debris or ice and dust left behind by asteroid (196256) 2003 EH1, which is likely an extinct comet (Jenniskens, 2004). It is active (and visible) between Dec. 28 and Jan. 12. The orbital similarity lies apparently somehow beyond the mean orbit. Figure 1 illustrates the radiant, magnitudes, velocity distribution, as well as the D-criterion of D_H and D_X . The 90% cutoff value of D_H and D_X are 0.36 and 0.42, respectively. The body underwent a series of close approaches to Jupiter in past centuries, the last one in October 1972 (~ 0.28 AU), possibly making the orbital changes of 2003 EH1.

3.2Lyrids

The Lyrid meteor shower is caused by the long trail of comet C/1861 G1 (Thatcher) which was found in 1861 and takes roughly 415 years to go around the sun once ((Beech & Nikolova, 2004) and reference in). The last time Thatcher approached to pass around the sun was in 1861, and its next passage will not be until 2283. At the present epoch, the Lyrids typically achieve a modest maximum zenithal hourly rate (ZHR) of 10 meteors per hour (Kronk, 1988). However, a brief outburst of 100 meteors an hour has been recorded for the Lyrids. The last Lyrid outburst was in 1982 when 75 meteors per hour were recorded by observers in Florida. Figure 2 shows the radiant, magnitudes, velocity distribution, as well as the D-criterion of D_H and D_X . Similar to the Quadrantids, the 90% cutoff values of D_H and D_X are 0.14 and 0.41. It seems to be consistent orbits between Lyrids and comet Thatcher but somehow incomparable, probably due to the long period comet with a period in the range 250 to 10,000 years. In this case, the dust is not dispersed too much along the orbit for us to recognize the shower (Jenniskens, 2006).

3.3Perseids

The Perseid meteor shower is one of the most prolific showers of the year, producing rich, bright streaks. This strong shower occurs when Earth passes through the debris trail from the comet 109P/Swift-Tuttle, whose nucleus is 26 km wide and swings by Earth every 133 years. The Perseids are active from mid-July until late August and peak around Aug. 13, 2023. Figure 3 displays the radiant, magnitudes, velocity distribution, and the Dcriterion of D_H and D_X . The D_H and D_X distribution is similar to a positively skewed distribution.

3.4Draconids

Some dramatic outbursts in the past have been addressed ((Egal et al., 2019)). The Draconids are caused by Earth passing through debris, left behind by the comet 21P/Giacobini-Zinner. Unfortunately, we did not find any data related to this meteor shower.

35

3.5eta-Aquariids and Orionids

The eta-Aquariids and Orionids are an annual meteor shower caused by tiny particles of debris from the most famous of all comets, 1P/Halley. The eta-Aquariids in early May and the Orionids in late October. The eta-Agu are usually two to three times stronger than the Orionids. On the contrary, the total numbers in Orionids display two times more than the usual activity level, probably due to unexpected outbursts or seasonal showers occurring every April. Figure 4 and 5 show the radiant, magnitudes, velocity distribution, as well as the D-criterion of D_H and D_X . The D_H and D_X are consistent with each other (The 90% cutoff value of D_H and $D_X 0.26$ and 0.48 for eta-Aqu and 0.32 and 0.47 for ORI).

3.6Taurids

The Taurid meteor shower is an annual meteor shower and is composed of two main branches: the Northern Taurids and the Southern Taurids. The source of these two showers is from Encke Complex which consists of comet 2P/Encke and several asteroids and meteor showers and was created from a large object that broke up about 20,000 years ago (Clube and Napier, 1984). The asteroid named 2004 TG10 and the comet Encke are believed to be the main sources of the Northern and Southern Tauids, respectively. The Southern Taurids tend to be most active around mid-October and the Northern Taurids tend to be most active in the first half of November. Figure 6 and 7 illustrate the radiant, magnitudes, velocity distribution, as well as the Dcriterion of D_H and D_X . The D-criterion of NTA seems to be in agreement but for STA is inconsistent, indicating that most of them might come from other potential sources (e.g. asteroids 2005 UR and 2005 TF50).

Leonids 3.7

The Leonid meteor shower occurs when Earth sails through a trail of particles released from the periodic comet 55P/Tempel-Tuttle. Usually, the Leonids offer clearsky meteor rates of about 10 to 15 shooting stars per hour. They are active between Nov. 3 and Dec. 2 and will peak on Nov. 17-18. Figure 8 shows the radiant, magnitudes, velocity distribution, and the D-criterion of D_H and D_X . The orbit similarity gives a wide range distribution and the 90% cutoff value of D_H and D_X are 0.44 and 0.54, respectively.

$\mathbf{3.8}$ Monocerotids

The Draconid meteor shows typical ZHR of 10 The possible genetic connection between the comet and and noticeable outbursts of activity in recent years. the December Monocerotids was studied by (Fox and

tributions. Figure 4 – eta-Aquariid meteor shower. (a) Red-square is the IMO's value, and blue-square is the mean value of all observed years. (d). Top-panel is D_X and bottom-panel is D_H .

(a) Leo radiant distributions. (b) Leo magnitude distributions. (c) Leo geocentric velocity distributions.

(d) Leo D-criterion

Proceedings of the IMC, Redu, 2023

Williams (1985)). The source is the Comet C/1917 F1 (Mellish) which was discovered in 1917. This bright comet is on ~ 145 years orbit and isn't back till around 2062. Figure 9 illustrates the radiant, magnitudes, velocity distribution, as well as the D-criterion of D_H and D_X . The D-criterion with 90% cutoff value of D_H and D_X are 0.19 and 0.34 which gives the consistent orbits with the comet C/1917 F1.

3.9 Geminids

The Geminid meteor shower occurs between November 19 to December 24 and usually the peak is on the nights of December 13 and 14. The debris comes from the asteroid 3200 Phaethon, but the activity of Phaethon can not explain the total mass estimated from ground-based observations (Lin et al., 2020). (Jewitt & Hsieh, 2006) suggested that the mass loss of the Geminid stream may arise from the Phaethon-Geminid complex (PGC) which is comprised of near-Earth asteroid (3200) Phaethon, the Geminid meteoroid stream, and possibly a few other near-Earth asteroids and meteoroid streams (Ohtsuka et al., 2006). Similar to the Encke complex, the PGC is presumably the product of the disintegration of a precursor object but the mechanism behind the disintegration, and when these objects are produced are both unknown. Figure 10 shows the radiant, magnitudes, velocity distribution, as well as the D-criterion of D_H and D_X . As a result of selection with $D_H \neq 0.20$, 96.4% similarity is found between the meteor and its parent body (3200) Phaethon's orbit.

3.10 Ursids

The Ursid meteor shower is active around the winter solstice. The meteors are generally a fairly sparse display, producing approximately five meteors per hour. The Ursids are associated with Comet 8P/Tuttle, which is a short-period comet that follows a 13.61-year elliptical orbit around the Sun. Figure 11 illustrates the radiant, magnitudes, velocity distribution, as well as the Dcriterion of D_H and D_X . Because of the data limit, the orbital similarity lies apparently far beyond the mean orbit.

4 Conclusions

- 1. The radiant drift seems to be occurring in each meteor shower, but the average value is consistent to the IMO's.
- 2. No outbursts were found from TMDS, especially in Perseids which had an outburst report in 2021, probably due to the observational bias and bad weather.
- 3. The D-criterion for each meteor shower might not be comparable to each other, implying the dispersion of the orbital elements, the radiants, and the nominal orbit of the parent comet. The orbital evolution analysis of the parent sources has

to be investigated in more detail, especially for some long-period comets (e.g. C/1917 F1 Mellish) whose orbital parameters are inaccurate.

Acknowledgements

We thank the Xue-Hui Ma, Chia-Hsien Liao in Kenting Observatory (National Museum of Natural Science), and the staff at Fu Shoushan Farm, Taroko National Park, and Tainan Astronomical Education Area for their kind help. This work was supported by grant number NSTC 112-2112-M-008-033 from the Ministry of Science and Technology of Taiwan.

References

- Jenniskens P. (2004) 2003 EH1 Is the Quadrantid Shower Parent Comet. AJ 127 3018
- Beech M. & Nikolova S. (1999) Large meteoroids in the Lyrid stream. MNRAS 305, 253-258
- Kronk G., (1988) Meteor Showers. A Descriptive Catalog. Enslow Publishers Inc., New Jersey
- Egal A., Wiegert P., Brown P. G., Moser D. E., Campbell-Brown M., Moorhead A., Ehlert S., Moticska N. (2019) Meteor shower modeling: Past and future Draconid outbursts. *Icarus* 330, 123-141
- Ohtsuka K., Sekiguchi T., Kinoshita D., Watanabe J.-I., Ito T., Arakida H., & Kasuga T. (2006) Apollo asteroid 2005 UD: split nucleus of (3200) Phaeton, A&A, 450, L25
- Jewitt D., & Hsieh H. (2006) Physical Observations of 2005 UD: A Mini-Phaethon. AJ, 132,1624
- Lin Z.-Y., Chi H.-C., Wang B.-H., Liu C.-C., Lee J., Lin H.-C., Wu B.-Y., Ma X.-H., Liao C.-H. (2020) The current development of the Taiwan Meteor Detector System (TMDS) with a dedication to the Geminids 2017 and 2018. *Planetary and Space Science* 180, 104763
- Wiegert, P., Vaubaillon J., Campbell-Brown M., (2009) A dynamical model of the sporadic meteoroid complex. *Icarus*, 201, 295
- Southworth R., Hawkins G. (1963) Statistics of meteor streams. Smithson. Contrib. Astrophys. 7, 261
- Jopek Y. (1993) Remarks on the meteor orbital similarity D-criterion. *Icarus* 106(2), 603-607
- Rudawska R., Matlovic P., Toth J., Kornos L. (2015) Independent identification of meteor showers in EDMOND database. *Planetary and Space Science* 118, 38-47
- Jenniskens P., (2006) Meteor Showers and their Parent Comets, Cambridge University Press.

40

Proceedings of the IMC, Redu, 2023

- Clube S.V.M. and Napier W. M., (1984) The microstructure of terrestrial catastrophism. *MNRAS*, 211, 953-968
- Suleyman M. O., (2009) WGN, Journal of the International Meteor Organization 37, 84
- Fox K. Williams I. P., (1985) A possible origin for some ancient December fireballs. MNRAS, 217, 407

Lulin-ASIAA Telescope for Transients and Education (LATTE)

Wei-Hao Wang (ASIAA)

LATTE is a project funded by Academia Sinica Institute of Astronomy and Astrophysics (ASIAA). It was commissioned in May of 2022. After about 1.5 years of testing and continuous upgrade, in 2024, LATTE officially joined NCU's open call for proposals together with the LOT and SLT. LATTE is now equipped with the observational tools that are familiar to NCU's Lulin observing staff, so the staff can easily conduct observations using LATTE. Through NCU's open call for proposals, LATTE supported a simultaneous monitoring campaign of young stellar objects with LOT (2025A-R04), where a initial sensitivity test on LATTE was successfully made in Dec 2024, and the official observations were made in early 2025. In trimesters 2024 A, B, and C, in total, LATTE supported four on-site educational observations that were applied through the open call. Outside the official call for proposals of NCU, LATTE also unofficially supported observational classes from NTHU both with on-site usage at Lulin and remote operation from NTHU's campus.

In late 2023, the filter systems on LATTE switched from the traditional Johnson-Cousins filters with bell-shaped transmission curves, to a modified Johnson-Cousins system with square-shaped transmission curves (1). The sharp edges of the transmission curves greatly help to suppress ghost reflections from bright stars. The >90% transmission throughout the passbands greatly improves the photon throughput. This new system works smoothly throughout 2024. Unfortunately, because of the limited amount of filter slots, currently we only have U, B, V, and R filters mounted on LATTE. There are plenty of data taken with this filter system in 2024 especially in B, V, and R filters in LATTE's archive. Such data can be available upon request, to help potential users to for evaluations on the limiting magnitudes and the color terms.

Outside the astronomical science and education, LATTE continues to support a collaboration project between Taiwan Space Agency (TASA) and ASIAA. This is to conduct feasibility studies of optical space situational awareness (SSA) programs for Taiwan. We used LATTE to observe known satellites in orbits to better understand the limits of such observations. We tested how well we can re-construct the satellite orbits. We also evaluated how likely we can use a similar system to discover unknown objects that may possess threats to our satellites. Eventually, this should help TASA to design an optical observational station dedicated to SSA. An invited talk on this project was given by a LATTE member during the 2024 International Workshop on Satellite Constellations and Formation Flying (IWSCFF, Dec 2024, Kaohsiung), in a session jointed with Taiwan International Assembly of Space Science, Technology, and Industry (TASTI).

Figure 1: LATTE's current filter system, a modified Johnson-Cousins U, B, V, R, and I system produced by Chroma Technology Corp. The B, V, and R filters are always mounted on LATTE. Currently (early 2025) U are also mounted. While I am not, I can be swapped with U upon request from scientific users. (Figure adapted from Chroma's website.)

Robotic Imager For Transients (RIFT)

李君樂 (NCKU)

RIFT is the abbreviation of Robotic Imagers For Transients, which is the first robotic astronomical observatory dedicated to the study of multi-messenger transients in Taiwan. Different from LOT, RIFT is designed to be a quick-response and wide-field system. With the fully robotic control, RIFT can carry out prompt follow-up observations of transients in minutes. Last year, RIFT focused on observing compact binary millisecond pulsars, and we aimed to measure the masses of the neutron stars in the systems through the data. Besides, we used RIFT to monitor some candidate optical counterparts to, e.g., X-ray transients and gravitational-wave sources.

Initial results from the observations of the Lunar Impact Flashes by the TULIP project

Z.-Y. Lin,¹★ Y.-P. Lai,² W.-H. Ip,¹ P.-C. Chung,³ H.-C. Lin,¹

1 Institute of Astronomy, National Central University, Taoyuan City 320317, Taiwan

2Department of Physics, National Central University, Taoyuan City 320317, Taiwan

3Department of Space Scinece & Engineering, National Central University, Taoyuan City 320317, Taiwan

ABSTRACT

Ground-based observations have detected light flashes produced by meteoroids impacting the night side of the Moon. In December 2017 and 2018, we participated for the first time in the monitoring campaign of lunar impact flashes by using two small telescopes at the Lulin observatory during the Geminid meteor storms. In 2022, we reconstructed the observational system to begin long-term operation. Until April 2024, 7 lunar flash events were observed, three of which are associated with meteor showers (Leonids and Geminids). The ratio of luminous energy emitted in the flashes with respect to the kinetic energy of the impactors from the Geminid stream in 2018 was derived to be $2.9\pm0.2 \times 10^{-3}$ from which the physical properties of meteoroids and craters can be estimated. The masses of the meteoroids range between 20 g and 1.4 kg, and their respective sizes in diameter are between 2 and 6 cm, depending on the assumed density of the projectile and target, as well as impact velocity.

1 Introduction

Lunar exploration has always been at the forefront of space research and planetary science, starting with the Apollo program. The Chang'e lunar program of China and NASA's Artemis project once again have cast the unmanned and manned missions to the Moon into the limelight. Many scientific and technical problems have emerged to prepare for permanent human habitats and in situ resource utilization on the Moon. One of the essential objectives is to investigate the meteoroid environment near the Earth-Moon system. Although meteoroids have never been definitively proven to have destroyed a spacecraft, there have been several in-flight anomalies attributed to meteoroid impacts, including the loss of the Olympus satellite to control system failure induced by a Perseid shower meteor impact (Meteoroid Environment Office, MEO). Understanding meteoroid fluxes and the associated risk of meteoroids impacting spacecraft traveling in and beyond Earth's orbit is, therefore, essential. With ground-based telescopes, objects that range from tens of meters in size to kilometer-sized have been frequently found and observed from all-sky survey projects. Optical monitoring observations can detect meteoroids from the ten-centimeter to meter size. The radar-detected system and spacecraft dust experiments can identify meteoroids with sizes as small as 100 μ m (1 μ g). This leaves a knowledge gap in the size-frequency distribution of small interplanetary objects in the range of micrometer to a few cm in size as far as ground-based observations are concerned. Fortunately, these observations can be made from the lunar surface flash. The idea of monitoring impact events using photomultipliers was already introduced at the beginning of the 1990s when it was modeled that impact flash events on the lunar surface can be recorded using modest telescopes (Melosh et al. (1993)). However, it was not until 2000 that the first impact flash was recorded successfully (Ortiz et al. (1999)). Since then, routine monitoring has been carried out with an automatic system at the NASA Marshall Space Flight Center (MSFC), 2005-2014), ESA NELIOTA (2017-2023), and other observatories worldwide (Brown et al. (2002), Madiedo et al. (2018), Yanagisawa et al. (2006)). According to Suggs et al. (2014), the MSFC found a total of 240 impacts; on average, there was a flash every two hours of observation, with dramatically higher rates during meteor showers. During the Gemini meteor showers in 2017 and 2018, coordinated observations were made between the Lulin Observatory and Electro-Communications and Nihon University in Japan were made(Yanagisawa et al. (2021)). After that, the system was not used until 2023, when it was included in the Taiwan University Lunar

Investigation Project (TULIP). This paper summarizes the results of the first two years (2023-2024) of the TULIP project and includes the repose of those of 2017 and 2018. Consistent observational practices and careful photometric calibration yield a dataset of 11 impact flashes. The monitoring technique, photometric calibration, and data selection are described. The calculation of impact kinetic energy, its association with meteor showers, and the calculation of impacter mass are discussed.

2 Instruments and Observations

In 2018, a pair of 20 cm and 15 cm telescopes were used for the Geminids Lulnar impact campaign, and detailed information on the observational instruments can be found in Yanagisawa et al. (2021). In 2022, we upgraded the system and placed them in one of the domes of the TAOS project remaining on the Lulin Observatory (Zhang et al. (2008), latitude: 23.4694 °N, 120.8726°E, 2862m above sea level). The observational system includes an RC12 (30 cm) telescope and a C8 (20 cm) telescope mounted together on the equatorial center balance mount, CME120 (see Figure 1). In early 2024, we upgraded the mounting system from CME120 to ME1 in order to improve the tracking. GPS time synchronized with the computer is used to stamp the time information on every video frame with an accuracy of 0.01s.

The software used to control the camera and record the video output to the hard drive was custom SharpCap software. We applied 2 × 2 binning and a maximum of 20 frames per second (fps) for the 30 cm telescope in late 2023 and 15 fps for the 20 cm telescope, respectively. Notice that the fps of each telescope could be changed according to weather and sky conditions. Due to a tracking issue of the mount in 2023, the video record was taken every six minutes. The total observational time after more than a year was extremely low, the main reason being the limited observational condition due to the surrounding trees near the TAOS dome, especially in the late quarter. As a consequence of the lack of data in the second half of the night, the impact events on the eastern hemisphere of the Moon would not be registered. Another adverse factor is the unstable weather, especially thunderstorms, which are most likely to occur during the summer months. Thus, we have obtained only ~ 12 hours of data with 15 nights from May 2022 to August 2023, and only one event has been confirmed as a lunar impact flash. Figure 2 shows the identified flashes recorded by both telescopes at 14:31:51 UT on February 27, 2023, with a 52%-illuminated waxing crescent Moon. Fortunately, the weather starting in November 2023 was getting better night by night, and therefore the total observation time increased significantly. Until the rainy season in late spring in 2024, we obtained 65.3 hours within 38 nights from late November 2023 to mid-April 2024. In total, seven impact flashes with magnitudes ranging between 5.8 and 9.3 in I-band magnitude were identified.

Figure 1. Robotic Lulin Lunar Impact Flashes Telescope was installed at one of the TAOS Domes.

Figure 2. First detection on Feb. 27, 2023 on the Lulin observatory. The top image is obtained by 20cm telescope and the bottom one is taken from 30cm telescope.

3 Conclusions

In this work, the dual telescope system is used to monitor lunar impact flashes at the Lulin Observatory, and its initial results are reported. A pilot project was conducted in 2018 during the Geminid meteor shower in cooperation with another observation system in Japan (Yanagisawa et al. (2021)). Starting in 2023, the upgraded Lulin lunar impact flash system has been included in the TULIP project for lunar science. Observations in 2023 and 2024 detected 7 events, three of which were classified as associated with Geminid and Leonid meteor showers. The observational data of the 2018 Geminid impact events allow us to estimate the luminosity efficiency to be $2.9\pm0.2 \times 10-3$ which falls within the range of $5 \times 10-4$ and $1.8 \times 10-3$ from previous observations with an average value of $1.5 \times 10-3$. Our calculations suggest that the diameters of the craters produced by the impact events observed at Lulin are generally on the order of a few meters. With the optical monitoring system and the data processing and analysis pipeline in place, we are ready to carry out routine observations. In addition, we will attempt to organize an observational network in Taiwan and nearby Asia-Pacific regions to increase data volume and time coverage. In addition to achieving a deeper understanding of the meteoroid complex in the vicinity of the Earth-Moon system, the gardening effect of meteoroid impacts is important for the formation and evolution of the lunar regolith as described in Speyerer et al. (2016). Furthermore, ground-based observations of lunar impact flashes can contribute to the study of the lunar crust and interior via seismometers developed on the lunar surface as envisaged for the Lunar Geophysical Network mission of NASA, and the Chang'e 7 mission of CNSA.

REFERENCES

Babadzhanov P. B., Kokhirova G. I., 2009, A&A, 495, 353
Bellot Rubio L. R., Ortiz J. L., Sada P. V., 2000a, in , Leonid Storm Research.
Springer Netherlands, pp 575–598, doi:10.1007/978-94-017-2071-7_42
Bellot Rubio L. R., Ortiz J. L., Sada P. V., 2000b, ApJ, 542, L65
Bouley S., et al., 2012, Icarus, 218, 115
Brown P., Spalding R. E., ReVelle D. O., Tagliaferri E., Worden S. P., 2002, Nature, 420, 294
Dubietis A., Arlt R., 2010, Earth Moon and Planets, 106, 105
Elbeshausen D., Wünnemann K., Collins G. S., 2009, Icarus, 204, 716

頁尾

Gault D. E., 1974, in Greeley R., Schultz P. H., eds, A Primer in Lunar Geology. pp 137–175

Hayne P., et al., 2017, The Journal of Geophysical Research Planets, 122, 2371-2400

Holsapple K., Schmidt R., 1982, Journal of Geophysical Research, 87, 1849

Hughes D. W., 1987, A&A, 187, 879

Jenniskens P., 1994, A&A, 287, 990

Jenniskens P., 2006, Meteor Showers and their Parent Comets. Cambridge University Press

Madiedo J. M., Ortiz J. L., Morales N., Cabrera-Caño J., 2015a, Planet. Space Sci., 111, 105

Madiedo J. M., Ortiz J. L., Organero F., Ana-Hernández L., Fonseca F.,

Morales N., Cabrera-Caño J., 2015b, A&A, 577, A118

Madiedo J. M., Ortiz J. L., Morales N., 2018, MNRAS, 480, 5010

Melosh H. J., 1980, Annual Review of Earth and Planetary Sciences, 8, 65

Melosh H. J., Artemjeva N. A., Golub A. P., Nemchinov I. V., Shuvalov V. V.,

Trubetskaya I. A., 1993, in Lunar and Planetary Science Conference.

Lunar and Planetary Science Conference. p. 975

Mitchell J. K., Carrier W. D. I., Costes N. C., Houston W. N., Scott R. F.,1973, Lunar and Planetary Science Conference Proceedings, 4, 2437

Moser D. E., Suggs R. M., Swift W. R., Suggs R. J., Cooke W. J., Diekmann A. M., Koehler H. M., 2011, in Cooke W. J., Moser D. E., Hardin B. F., Janches D., eds, Meteoroids: The Smallest Solar System Bodies. pp 142–154

Öpik E. J., 1969, ARA&A, 7, 473

Ortiz J. L., Aceituno F. J., Aceituno J., 1999, A&A, 343, L57

Ortiz J., et al., 2006, Icarus, 184, 319

Schmidt R. M., Housen K. R., 1987, International Journal of Impact Engineering, 5, 543

Speyerer E. J., Povilaitis R. Z., Robinson M. S., Thomas P. C., Wagner R. V., 2016, Nature, 538, 215

Suggs R., Moser D., Cooke W., Suggs R., 2014, Icarus, 238, 23

Swift W., Moser D., Suggs R., Cooke W., 2011, Meteoroids conference, pp 125-

Wünnemann K., Nowka D., Collins G., Elbeshausen D., Bierhaus M., 2011, in Proceedings of the 11th Hypervelocity Impact Symposium 2010.

Yanagisawa M., Ohnishi K., Takamura Y., Masuda H., Sakai Y., Ida M.,

Adachi M., Ishida M., 2006, Icarus, 182, 489

Yanagisawa M., et al., 2021, Planetary and Space Science, 195, 105131

Zhang Z.-W., et al., 2008, The Astrophysical Journal, 685, L157

國立清華大學原科中心 蕭棟元

國立中央大學太空科學與工程系 劉正彥

國立中央大學太空科學與工程系 趙政勛

• 小型全天式大氣輝光相機(All Sky Airglow Imager)

630.0 nm 557.7 nm 762.0 nm

[上圖]為在國際太空站上所拍攝到 的大氣輝光(Airglow)

電離層之大氣輝光主要是由於離 子與電子再結合,過程中產生的激 發態的氧原子(O*),返回基態(O)所 釋放之光。

分別為位於 250~400 km 高處之紅 光(630 nm),與電子密度成正比。 次要為位於 100 km 高處之緣光 (557.7 nm)構成,與中性大氣密度成 正比。

其透過魚眼鏡頭(Fisheye)、窄頻寬之濾光片(Narrow-Band)、感光元件(CCD)組成之 全天式大氣輝光相機(All Sky Airglow Imager),可觀測大範圍之電離層電子密度分 布之時空變化

可用以觀測多種電離層擾動現象,研究其物理特性與形成機制, 以及作為預警用途

由於電離層對於電磁波而言是一種頻散介質,不同頻率的電磁波有不同的延遲量,使用雙頻L1(~1.5Ghz),L2(1.2Ghz)之GNSS接收機,可用來估計其接收機至衛星連線上的電子密度的積分,稱之為電離層全電子含量(Total Electron Contents, TECs),此一延遲量是使用單頻GPS定位使用之最大來源之一。

此外還可應用 GNSS 訊號研究以下各種電離層現象

- ✔ 電離層全電子含量(TECs)分布與時間變化
- ✓ 電離層閃爍(Ionospheric Scintillation)
- ✓ 中尺度電離層移行擾動(Medium-scale traveling ionospheric disturbances, MSTIDs)

The Astronomer's Telegram

- 1. A new silhouette edge-on protoplanetary disk in M20 (Trifid Nebula)?, Wang W.-H., The Astronomer's Telegram, No. 16707
- Kinder optical observations of the X-ray brightening blazar NVSS J004348+342626, Lee M.-H., Aryan A., Yang Y. J., et al., The Astronomer's Telegram, No. 16726

General Coordinates Network

- X-ray transient EP240315a: Kinder follow-up observations for AT 2024eju with Lulin observatory, Chen T.-W., Yang S., Lee M.-H., et al., GRB Coordinates Network, Circular Service, No. 35938
- X-ray transient EP240331a: Kinder optical upper limits, Chen T.-W., Yang S., Smartt S., et al., GRB Coordinates Network, Circular Service, No. 36011
- GRB/FXT 240402B: Kinder optical counterpart candidate, Yang S., Chen T.-W., Hsiao H.-Y., et al., GRB Coordinates Network, Circular Service, No. 36027
- 4. GRB 240411B: Kinder observations with Lulin observatory, Aryan A., Chen T.-W., Lin C.-S., et al., GRB Coordinates Network, Circular Service, No. 36077
- EP240414a: Kinder optical counterpart candidate possibly associated with the galaxy SDSS J124601.99-094309.3, Aryan A., Yang S., Chen T.-W., et al., GRB Coordinates Network, Circular Service, No. 36094
- 6. GRB 240415A: Earliest optical followup with the Kinder observations, Aryan A., Chen T.-W., Hou W.-J., et al., GRB Coordinates Network, Circular Service, No. 36132
- 7. EP240416a: Kinder optical counterpart candidate, Chen T.-W., Aryan A., Yang S., et al., GRB Coordinates Network, Circular Service, No. 36139
- 8. EP240506a: Optical upper limit with Kinder observations, Aryan A., Yang S., Chen T.-W., et al., GRB Coordinates Network, Circular Service, No. 36408
- 9. EP240703a: Kinder optical follow-up observations, Aryan A., Yang S., Chen T.-W., et al., GRB Coordinates Network, Circular Service, No. 36819
- EP240703c: Kinder optical follow-up and Swift XRT observations, Yang Y. J., Aryan A., Yang S., et al., GRB Coordinates Network, Circular Service, No. 36823
- 11. EP240708a: Optical upper limits with Kinder observations, Lai C.-H., Aryan A., Chen T.-W., et al., GRB Coordinates Network, Circular Service, No. 36839
- 12. GRB240713A: Optical upper limit with Kinder observations, Sankar. K A., Aryan A., Yang Y. J., et al., GRB Coordinates Network, Circular Service, No. 36857
- EP240801a: Kinder follow-up observations of the candidate counterpart, Aryan A., Kong A. K. H., Hsiao H.-Y., et al., GRB Coordinates Network, Circular Service, No. 37002
- 14. EP240802a: Time coincidence with GRB 240802A and optical upper limits with Kinder observations, Aryan A., Chen T.-W., Yang S., et al., GRB Coordinates Network, Circular Service, No. 37021

- 其他
 - 15. EP240802a: Kinder optical, SWIFT-UVOT, and SWIFT-XRT upper limits 6 days after the WXT detection, Yang Y. J., Aryan A., Chen T.-W., et al., GRB Coordinates Network, Circular Service, No. 37178
 - 16. EP240918a: Optical upper limits with Kinder observations, Kong A. K. H., Aryan A., Chen T.-W., et al., GRB Coordinates Network, Circular Service, No. 37545
 - 17. EP240919a: Optical upper limit with Kinder observations, Aryan A., Kong A. K. H., Yang Y. J., et al., GRB Coordinates Network, Circular Service, No. 37575
 - 18. EP240918b and EP240918c: Optical upper limits with Kinder observations, Lai C.-H., Aryan A., Kong A. K. H., et al., GRB Coordinates Network, Circular Service, No. 37577
 - EP241021a: Optical upper limits with Kinder observations, Yang S., Aryan A., Chen T.-W., et al., GRB Coordinates Network, Circular Service, No. 37843
 - EP241107a: Kinder optical follow-up observations, Kong A. K. H., Aryan A., Chen T.-W., et al., GRB Coordinates Network, Circular Service, No. 38131
 - EP241115a/GRB 241115D: Optical upper limits with Kinder observations, Fan L. L., Aryan A., Chen T.-W., et al., GRB Coordinates Network, Circular Service, No. 38254
 - EP241119a: Optical upper limits with Kinder observations, Aryan A., Chen T.-W., Hou W.-J., et al., GRB Coordinates Network, Circular Service, No. 38290
 - LIGO/Virgo/KAGRA S241125n: Kinder optical upper limit in the BAT error region, Chen T.-W., Brennan S. J., Ronchini S., et al., GRB Coordinates Network, Circular Service, No. 38314
 - 24. EP241125a: Optical upper limit with Kinder observations, Lai C.-H., Aryan A., Chen T.-W., et al., GRB Coordinates Network, Circular Service, No. 38319
 - 25. EP241126a: Optical Upper limits with Kinder observations, Lai C.-H., Aryan A., Chen T.-W., et al., GRB Coordinates Network, Circular Service, No. 38344
 - 26. EP241201a: Kinder optical counterpart candidate, Lee M.-H., Yang S., Aryan A., et al., GRB Coordinates Network, Circular Service, No. 38418
 - 27. EP241202b: Kinder optical counterpart candidate, Ngeow C.-C., Yang S., Aryan A., et al., GRB Coordinates Network, Circular Service, No. 38433
 - 28. EP241208a: Optical upper limit with Kinder observations, Wang Z. N., Yang S., Aryan A., et al., GRB Coordinates Network, Circular Service, No. 38520
 - 29. EP241217a: Kinder optical follow-up observations, Fan L. L., Aryan A., Chen T.-W., et al., GRB Coordinates Network, Circular Service, No. 38592

Transient Name Server AstroNote

- 1. Kinder follow-up observations of AT 2024ggi (ATLAS24fsk), Chen T. W., K A. S., Yang S., et al., Transient Name Server AstroNote 2024-102
- 2. Kinder follow-up observations of AT 2024qfm (ZTF24aaxhxhf), Lai C. H., Aryan A., Yang S., et al., Transient Name Server AstroNote 2024-208

3. Kinder follow-up observations of SN 2024advj (ZTF24abxpkhb), Chen T. W., Fulton M.,

Smartt S. J., et al., Transient Name Server AstroNote 2024-367

4. Kinder follow-up observations of AT 2024aecx (ATLAS24rkq), Chen T. W., Yang S., Stevance H. F., et al., Transient Name Server AstroNote 2024-372

III 工作報告
營運報告

鹿林天文台一米望遠鏡 (LOT) 觀測時數統計

鹿林天文台自 2002 年 9 月起開始有人員進駐,自 2003 年鹿林一米望遠鏡 (LOT) 啟用後,便有系統地紀錄觀測時數,這些資料有助於了解長期的夜間觀測情況。表 1 呈現了 2003 至 2024 年共 22 年間的觀測時數統計結果,期間 LOT 的年平均觀測時數約為 1,450 小時。

根據 2003 至 2024 年的平均月觀測時數 (見圖 2),可將一年劃分為四個觀測季如下:

- 最佳觀測季(10-12月):天氣晴朗穩定,且畫短夜長,是一年中觀測條件最理想的時期。
- 次佳觀測季(1-3月):雖然天氣依然穩定,但夜間時數相較於最佳觀測季稍短。
- 最差觀測季(4-6月):自4月起進入雨季,5至6月受到梅雨鋒面影響,天氣條件最 不穩定。
- 次差觀測季(7-9月):主要受颱風影響,天氣變化劇烈。此外,夏季晝長夜短,夜間 可觀測時數顯著少於冬季。

Figure 2: LOT 月平均觀測時數統計圖 (2003-2024)

圖3顯示 LOT 歷年觀測總時數,2024年的總觀測時數約為1,315小時,較歷年平均值 (1,450小時)減少約150小時。根據圖2可發現2024年10月的觀測時數較2003-2024年的 10月平均值少了約90小時。造成此差異的主要原因為2024年有三個颱風直接侵襲台灣, 其中山陀兒與康瑞兩個颱風於10月對台灣造成明顯影響。此外,自10月23日至27日,也 受到潭美颱風外圍環流的干擾,導致該段期間無法進行觀測。因此,2024年10月的觀測時 數明顯低於歷年同期平均。另外,雖然每年4至6月原本即為梅雨季,觀測條件較差,但 2024年從5月中旬至6月中旬約一個月的時間內,因連續惡劣天候幾乎無法進行觀測,也 使得5月與6月的觀測時數遠低於歷年平均。

Figure 3: LOT 觀測時數統計圖 (2003-2024)

Table 1: 鹿林天文台 LOT 觀測時數統計表 (2003-2024)

	Total	1738.5	1756.43	1655.5	1207.27	1435.92	1478.5	1472.52	1458.35	1169.20	1162.41	1339.63	1555.89	1495.85	1226.57	1462.50	1422.25	1531.19	1609.84	1560.24	1394.24	1492.32	1315.36	1450.04	- 0
	12	271.5	232.45	129	132	261.09	211.17	169.8	169.65	115.25	121.71	75	137.3	161.2	193.27	156.7	170.05	187.5	125.44	202.8	184.73	156.06	148.43	168.28	, 甚至為 ()
	11	166.5	214.5	216.25	71.75	160.55	152.55	175.8	163.65	87.2	93.81	136.1	166.15	197.05	171.85	134.55	148.15	200.29	185.65	129.6	171.92	210.45	157.16	161.17	则時數很少
	10	149.25	219.75	210.25	150.6	172.63	191.38	175.6	139.8	136.95	214.51	211.57	232.33	145.4	142.2	187.8	142.05	193.75	163.82	132.21	144.77	76.21	70.9	165.03	く、た月鶴
	6	142	116	129.25	60.05	69.55	59.8	0^1	109.95	90.1	117.35	107.39	134.39	93.25	42.85	128.2	93.45	137.45	82.28	116.42	61.55	86.39	79.43	95.76	f以 2009 年
	×	137.75	142	26	111.65	56.6	118.95	6.8^{1}	98.3	97.9	35.7	72.2	110.9	45.1	61	139.9	50.35	58.2	78.3	71.08	94.92	53.78	77.01	82.28	無法觀測。所
恣	7	222.5	48	167.75	91.57	128.88	88.4	76.6	99.85	81.75	106.4	88.05	114.65	87.45	123.95	105.25	80.65	77.35	102.5	90.4	146.67	101.27	136.78	104.81	齡並停電,
Ę	9	24	133	45	39.3	54	37	81.75	26.5	61.5	35.15	80.14	33.7	146.9	114.05	76.1	70.35	56.55	137.9^{2}	13.8	44.65	64.64	38.66	62.70	期間道路中
	Q	129.75	106.25	136.25	59.5	106.6	98.25	167.4	86.05	56.6	74.3	41.02	32.4	64.2	86.05	84.55	190.7	39.1	88.35	87.16	26.08	72.45	49.15	83.27	初約2個月
	4	126.5	110.5	144.75	86.8	53.75	85.25	71.8	75.8	151.45	32.75	55.83	135.95	124	82.9	86.9	125.7	124.35	98.75	125.74	126.11	138.47	90.47	103.52	人日起至十月
	3	147.5	163	143	126.05	116.4	138.5	146.75	181.3	75.9	152.43	134.26	78.7	111.1	72.8	96.4	173.7	124	121.35	165.88	126.97	203.63	126.14	132.47	2 地 響,自八月/
	2	142.5	145.98	94.75	149	128.55	118.25	165.7	100.6	123.8	64.88	183.96	109.8	131.65	60.25	105.3	66.7	136.35	191.1	197.37	120.92	194.71	168.47	132.15	最低值後取子 八八風災影
	1	78.75	125	163.25	129	127.32	179	234.52	206.9	90.8	113.42	154.11	269.62	188.55	75.4	160.85	110.4	196.3	234.4	227.78	144.95	134.26	172.76	158.62	扣除最高及1
		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	Average*	* Average 為 1 2009 年因 §

LOT 觀測研究計畫統計

鹿林天文台一米望遠鏡 (LOT) 觀測研究計畫時間安排以4個月為一個觀測期,一年分為三期(A = 1-4月、B = 5-8月、C = 9-12月),其中字母開頭:E為天文教學觀測、R為國內研究計畫、*R為國際合作計畫,大型計畫 EDEN 亦為國際合作計畫。

2024 年的觀測計畫如圖 4 所示, 教學觀測有 9 個, 佔 17%。國內研究計畫有 24 個, 佔 40%。國際合作計畫有 21 個, 佔 39%。

Figure 4: 2024 年 LOT 計畫比例圓餅圖

LOT Semester 2024A (01 January - 30 April, 2024)

Education Program:

- E01 Education Training of the NCKU Astronomy Club PI: Alfred Bing-Chih Chen (<u>e54114172@gs.ncku.edu.tw</u>)
- E03 Training project in Senior High School -Students join in Pan-STARRs's Asteroid searching PI: Shih-Chao Lin (<u>shichao.lin@gmail.com</u>)

Research Program:

(Programs which have international CoIs are marked with *)

- *R01 Lulin Supernova Program PI: Yen-Chen Pan (<u>ycpan@astro.ncu.edu.tw</u>)
- *R02 Searching for Variable Stars in Newly Discovered Ultra-Faint Dwarf Galaxies PI: Chow-Choong Ngeow (<u>cngeow@astro.ncu.edu.tw</u>)
- *R03 Multi-color observation of 1991 AQ, 2001 QQ142 and other NEOs PI: Fernando Abárzuza (<u>fernando.abarzuza@lightbridges.es</u>)
- *R04 The realization of the high-precision astrometric of LOT PI: Zhong-jie Zheng (<u>azhengzj@gdou.edu.cn</u>)
- R05 The study of the dust to gas ratio and rotation in long- and short-period comets PI: Zhong-Yi Lin (zylin@astro.ncu.edu.tw)
- *R06 LOT follow-up of transient events and new discovery objects from ZTF (ToO) PI: Zhong-Yi Lin (zylin@astro.ncu.edu.tw)
- R07 ToO Observations of Cosmic Transient Events (ToO) PI: Albert Kong (<u>akong@phys.nthu.edu.tw</u>)
- R08 Spectroscopic Survey on Themis Asteroids (with extra people) PI: Yu-Chi Cheng (<u>yuchi.cheng@gapps.ntnu.edu.tw</u>)
- *R09 Towards the first detection of optical counterparts of fast radio bursts (ToO) PI: Tetsuya Hashimoto (<u>tetsuya@phys.nchu.edu.tw</u>)
- R10 Chromospheric Activity of Flaring M Type Eclipsing Binaries PI: Li-Ching Huang (<u>lchuang@ntnu.edu.tw</u>)
- R12 Probing the accretion stability of Herbig Ae/Be star PI: Jyun-Heng Lin (<u>41141905S@gapps.ntnu.edu.tw</u>)

- *R13 Gold factories in the Universe: discovering and understanding the nature of kilonovae (ToO) PI: Ting-Wan Chen (<u>twchen@astro.ncu.edu.tw</u>)
- *R14 Inflated Atmospheres of Hot Jupiters PI: Ya-Lin Wu (<u>yalinwu@ntnu.edu.tw</u>)
- R15 Monitoring Accretion onto Young Brown Dwarfs PI: Ya-Lin Wu (<u>yalinwu@ntnu.edu.tw</u>)
- R16 Chemical Abundance of Recent Bright Comet by LISA (with extra people) PI: Yu-Chi Cheng (yuchi.cheng@gapps.ntnu.edu.tw)

LOT Semester 2024B (01 May - 31 August, 2024)

Education Program:

- E01 Observation Training for CYCU Astronomy Club (LATTE) PI: Hung-Chin Lin (<u>hclin@astro.ncu.edu.tw</u>)
- E02 Off-Campus Teaching of "Introduction to Astrophysics" (no observations needed) PI: Chin-Ping Hu (<u>cphu0821@gm.ncue.edu.tw</u>)
- E03 Educational Program for Affiliated Senior High School of NTNU PI: Sheng-Yuan Liu (<u>syliu@asiaa.sinica.edu.tw</u>)

Research Program:

(Programs which have international CoIs are marked with *)

- *R01 Lulin Supernova Program PI: Yen-Chen Pan (<u>ycpan@astro.ncu.edu.tw</u>)
- *R02 RR Lyrae-Based Metallicity and Distance to Selected Ultra-Faint Dwarf Galaxies PI: Chow-Choong Ngeow (<u>cngeow@astro.ncu.edu.tw</u>)
- R03 Refine the ephemerides of exoplanets for the Ariel Space Telescope PI: Yen-Hsing Lin (julius52700@gmail.com)
- R04 Monitoring Accretion onto Upper Scorpius Brown Dwarfs PI: Ya-Lin Wu (<u>yalinwu@ntnu.edu.tw</u>)
- R05 Characterizing Mercury's Sodium Exosphere PI: Chen-Yen Hsu (pandaangela915@gmail.com)
- *R06 Towards the first detection of optical counterparts of fast radio bursts (ToO/ CMOS camera) PI: Tetsuya Hashimoto (tetsuya@phys.nchu.edu.tw)
- R07 The study of the dust to gas ratio and rotation in long- and short-period comets PI: Zhong-Yi Lin (zylin@astro.ncu.edu.tw)
- *R08 LOT follow-up of transient events and new discovery objects from ZTF (ToO) PI: Zhong-Yi Lin (zylin@astro.ncu.edu.tw)

*R10 - High-precision photometry and astrometry for several binary asteroids in the dense stellar field

PI: Zhong-jie Zheng (azhengzj@gdou.edu.cn)

R11 - Spectroscopic Survey on Themis Asteroids (with extra people) PI: Yu-Chi Cheng (<u>yuchi.cheng@gapps.ntnu.edu.tw</u>)

- R12 Chemical Abundance of Recent Bright Comet by LISA (with extra people) PI: Yu-Chi Cheng (yuchi.cheng@gapps.ntnu.edu.tw)
- R13 Probing the accretion stability of Herbig Ae/Be star PI: Jyun-Heng Lin (<u>41141905S@gapps.ntnu.edu.tw</u>)
- *R14 Gold factories in the Universe: discovering and understanding the nature of kilonovae (ToO) PI: Ting-Wan Chen (<u>twchen@astro.ncu.edu.tw</u>)
- R15 Spectral Types Identity of the Flaring Eclipsing Binary Components PI: Li-Ching Huang (lchuang@ntnu.edu.tw)
- R16 Chromospheric Activity of Flaring M Type Eclipsing Binaries PI: Li-Ching Huang (<u>lchuang@ntnu.edu.tw</u>)

LOT Semester 2024C (01 September - 31 December, 2024)

Education Program:

- E01 Student Training for the `Fundamentals of Observational Astronomy' Course at NTHU PI: Shih-Ping Lai (<u>slai@phys.nthu.edu.tw</u>)
- E03 Practical Class of ``Observational Astronomy'' PI: Albert Kong (<u>akong@phys.nthu.edu.tw</u>)
- E04 Advanced Observation Training for Students of TCFSH PI: Wei-Jie Hou (weij@astro.ncu.edu.tw)
- E05 Spectroscopic Classification and Photometric Analysis of Bright Supernovae PI: Ting-Wan Chen (<u>twchen@astro.ncu.edu.tw</u>)

Research Program:

(Programs which have international CoIs are marked with *)

- *R01 Lulin Supernova Program PI: Yen-Chen Pan (<u>ycpan@astro.ncu.edu.tw</u>)
- *R02 RR Lyrae-Based Metallicity and Distance to Selected Ultra-Faint Dwarf Galaxies PI: Chow-Choong Ngeow (<u>cngeow@astro.ncu.edu.tw</u>)
- R03 Searching for new binary central stars of planetary nebulae PI: Albert Kong (<u>akong@phys.nthu.edu.tw</u>)
- *R05 Refine the ephemerides of exoplanets for the Ariel Space Telescope PI: Yen-Hsing Lin (julius52700@gmail.com)
- *R06 Gold factories in the Universe: discovering and understanding the nature of kilonovae (ToO) PI: Ting-Wan Chen (<u>twchen@astro.ncu.edu.tw</u>)
- *R07 Extending the photometric monitoring of superluminous supernovae to late phases (partial ToO)

PI: Aiswarya Sankar.K (d1129601@gm.astro.ncu.edu.tw)

- R08 Spectral Types Identity of the Flaring Eclipsing Binary Components PI: Li-Ching Huang (lchuang@ntnu.edu.tw)
- *R09 Optical Follow-up of the Einstein Probe Discovered Fast X-ray Transients (ToO) PI: Amar Aryan (<u>amar@astro.ncu.edu.tw</u>)
- R10 Characterizing Mercury's Sodium Exosphere PI: Chen-Yen Hsu (pandaangela915@gmail.com)

- *R11 LOT follow-up of transient events and new discovery objects from ZTF (ToO) PI: Zhong-Yi Lin (zylin@astro.ncu.edu.tw)
- R12 The study of the dust to gas ratio and rotation in long- and short-period comets PI: Zhong-Yi Lin (zylin@astro.ncu.edu.tw)
- R13 Chromospheric Activity of Flaring M Type Eclipsing Binaries PI: Li-Ching Huang (<u>lchuang@ntnu.edu.tw</u>)
- R14 Probing the accretion stability of Herbig Ae/Be star PI: Jyun-Heng Lin (<u>41141905S@gapps.ntnu.edu.tw</u>)
- R15 Lulin Twilight Comet Survey (partial ToO) PI: Yu-Chi Cheng (<u>ycc312@g.ncu.edu.tw</u>)
- R16 Spectroscopic Survey on Themis Asteroids PI: Yu-Chi Cheng (<u>ycc312@g.ncu.edu.tw</u>)

鹿林天文台合作計畫

台灣位處太平洋西側,在廣大的太平洋上(橫跨6個時區)只有夏威夷有天文台,對於 觀測隨時間變化的天文現象或是全球不同經度的天文台(包括太空望遠鏡)針對特定天體的 聯合觀測, 鹿林天文台扮演舉足輕重的角色。多年來鹿林天文台積極參與國際合作計畫,與 各國天文台建立良好合作模式,並取得優良成果。

鹿林天文台地處高山,遠離都市光害,且海拔高度在逆溫層之上,晴天率較高,是國內 天文觀測條件最好的地點之一。基地內除由中央大學天文所管理的 LOT、SLT 及 LWT 三座 望遠鏡外,原 TAOS 計畫結束留下的平頂天文台則提供給國內天文教研單位設置望遠鏡進行 遠端觀測,充分發揮研究及教學功能。天文台擁有完善的基礎設施(水電、網路等),也提 供合作單位架設自動觀測設備,如流星監視器、全天魚眼相機等,以進行長期監測。

國際合作計畫

- 1. 全球蠍虎 BL 類星體聯合觀測計畫(The Whole Earth Blazar Telescope GLAST-AGILE Support Program, WEBT-GASP): 監測活躍星系核,藉此研究黑洞與噴流的性質。
- 2. 年輕超新星巡天計畫 (Young Supernova Experiment):使用 Pan-STARRS telescopes 在 ZTF 天區進行巡天,藉由兩者之間經度的差距來探測瞬變天體早期的演化。
- 3. 千級新星發現計畫 (Kinder: kilonova finder):使用 40cm-SLT 對 ATLAS 巡天所發現的 鄰近 (<100 Mpc) 天體進行即時觀測,找出亮度快速下降的天體為千級新星候選者, 再藉由 ePESSTO+ 以及 ENGRAVE 計畫的望遠鏡拍攝光譜確認。以期獨立於重力波 觀測外發現千級新星。
- 系外行星監測計畫 (ExoClock): 利用 LOT 監測預期掩星事件,精確校正系外行星掩星時間,提升行星軌道預測準確性。

國內合作計畫

- 1. 台灣流星觀測網 TMDS (Taiwan Meter Detection System): 聯合全台五個地點共 14 個 流星觀測站,調查流星基本物理特性、找尋未知流星群與流星群的非預期爆發現象。
- 2. 星瞬望遠鏡 Robotic Imager For Transients (RIFT):接收重力波、微中子和高能電磁波 觀測中發現的緻密星瞬變事件,並全自動進行此類事件的後續觀測。
- 拿鐵望遠鏡 Lulin-ASIAA Telescope for Transients and Education (LATTE):五十公分 望遠鏡,搭配七片濾鏡與 CCD 相機,除研究、遠端教學觀測外,部分時間供大眾提出 目標申請。
- 4. 月閃觀測望遠鏡 Robotic Lunar Impact Flashes telescope (RoLIFE):通過監測流星體撞擊月球表面所產生的閃光來加以分析與統計,補足流星體大小天體的數量估算的分布資訊。
- 中大太空所 EUDA 2M 全天相機:利用全天影像儀觀測大氣輝光,研究大氣電子濃度、 移動速度與電漿泡等課題。

團體參觀及教學觀測

如表 2 所示,2024 年參觀團體共 31 團,總人次為 611 人。其中以藍字標示的團體為 LOT 教學觀測,共 5 團,占 68 人次。其他則為自行申請的團體參觀,共 26,占 543 人次。 因為 0403 地震影響,擔心山區道路危險,4 月 8 日至四月底暫停參觀。

Figure 5: 新竹高中天文社

Figure 6: 成功高中天文社

日期	單位	人數
1月4日	警察小隊長官	4
1月9日	台大天文社	27
1月25日	彰興國中	23
2月5日	北集星 (台北高中聯合)	41
2月15日	成大天文社	11
3月9日	中央大學天文社	23
3月15日	空軍第四天氣中心	19
4月4日	新竹高中天文社	24
4月8日	新位令 朔	
4月30日	百行今代	
5月11日	台北教育大學自然教育學系	24
5月25日	墾丁/玉山國家公園志工聯誼會	22
5月31日	師大附中校友團	24
6月1日	政大天文社	11
6月22日	師大附中天文觀測	10
7月12日	嘉義市玉山國中	20
7月14日	亞洲大學軍訓室	18
8月3日	成功高中天文社	16
8月12日	中原大學	16
8月30日	海洋國家公園副處長與台南市工務局長一行	18
8月31日	竹塹社大	39
9月1日	3.5AU 天文教育工作坊	9
10月12日	中央大天文觀測課	17
10月12日	荒野保護協會北三親子團	10
10月20日	中央大學退休聯誼會	30
10月27日	玉管處觀星活動	32
11月8日	中央大學校友總會	6
11月9日	清華大學天觀課	14
11月12日	全人中學小學部	22
11月24日	台北天文館2	30
11月24日	台北天文館1	30
11月28日	信義分局	9
12月7日	竹塹社大	12

'Iable 2: 2024 年参暮	睍 庨	艒
--------------------	-----	---

鹿林天文台作為國內唯一的研究型天文台, 肩負天文教學與科學普及的推廣責任。自開 台以來,便持續接受各界單位與團體參訪,並由天文台人員協助導覽與解說。自 2010 年起 開始正式統計參觀人次。如圖 7 所示,自 2010 年以來,參觀人數逐年上升,至 2018 年達到 高峰,當年共有 908 人次。然而,受到 2019 年底爆發的 Covid-19 疫情影響,天文台自 2020 至 2022 年暫停開放參觀,導致人次大幅下滑。隨著疫情於 2023 年解封,參訪活動恢復正 常,參觀人數明顯回升。雖然 2024 年的參觀人次略低於前一年,但仍超過 600 人次。

Figure 7: 鹿林天文台歷年參觀人次統計 (2010-2024)

Figure 8: 鹿林天文台歷年參觀團數統計 (2010-2024)

歷年 SCI 期刊論文統計

鹿林天文台於 1999 年建立首座天文台 (SLT),建台初期無水無電、無人員常駐,且望 遠鏡與相關研究設備尚未完善,因此觀測與研究工作進展困難。直到 2002 年,天文台控制 中心落成,一米望遠鏡 (LOT)正式啟用,水電等基礎設施建置完成,人員開始常駐,觀測 與研究工作才逐步上軌道。2003 年,LOT 望遠鏡開放申請使用,自此每年皆有基於鹿林天 文台觀測數據的 SCI 期刊論文發表。自 2003 年至 2024 年底,共計發表 246 篇論文,其統 計結果按「年別」及「期刊別」分類如下:

Figure 9: 鹿林天文台相關 SCI 期刊論文統計 - 按年別

Figure 10: 鹿林天文台相關 SCI 期刊論文統計 - 按期刊別

Table 3: 期刊全名、簡稱對照表

$\mathbf{A} \& \mathbf{A}$: Astronomy and Astrophysics	NatSR : Nature Scientific Reports
\mathbf{AJ} : The Astronomical Journal	Natur : Nature
\mathbf{AN} : Astronomische Nachrichten	P&SS : Planetary and Space Science
\mathbf{AdSpR} : Advances in Space Research	\mathbf{PASJ} : Publications of the Astronomical Society
\mathbf{ApJ} : The Astrophysical Journal	of Japan
\mathbf{ApJL} : The Astrophysical Journal Letters	PASP : Publications of the Astronomical
ApJS : The Astrophysical Journal Supplement	Society of the Pacific
Series	\mathbf{PSJ} : The Planetary Science Journal
$\mathbf{EM\&P}$: Earth, Moon, and Planets	RAA : Research in Astronomy and Astrophysics
Icar : Icarus	\mathbf{RSPTA} : Philosophical Transactions of the
\mathbf{MNRAS} : Monthly Notices of the Royal	Royal Society A
Astronomical Society	Sci : Science
NatAs : Nature Astronomy	

更新與維修

LOT

光軸調整

目的:利用當日滿月 LOT 的 Engneering Time 時間將光軸調整得更好。 器材和軟體: ZWO ASI 178 行星相機 + 筆記型電腦 + SHARPCAP 軟體。 操作細節步驟和光軸調整:

- 先拆下 ANDOR 936 相機,更換接環,再將行星相機接上,打開筆記型電腦,開啟 SHARPCAP 軟體,並遠端連接 LOT 電腦,後者為手動控制調整對焦座找尋焦點之 用。
- 將望遠鏡指向某顆亮度適宜的恆星,在 SHARPCAP 軟體中開啟 LIVE 模式,調整軟 體參數,隨之出現失焦的恆星影像。
- 3. 在 FOCUSMAX 軟體中微調,找尋焦點位置。
- 當星點愈來愈小之時,再怎麼調整調焦座,但見影像出現很多的小光點聚集在一個大小的範圍內,然而無論如何調動調焦座和調整主鏡座下方的三個光軸調整旋鈕,結果都是一樣。
- 經討論,發現原因是出現在將行星相機設定在 binning 1 的模式上,此相機的畫素大小 是 2.4um,像素過小、過度採樣所致
- 6. 查閱 ANDOR 936 的像素大小為 13.5um,因此將行星相機原本的 binning 1,隨後修改 讀出的合併模式,讓 LIVE 時影像的每個像素接近於 13.5um,不要過度採樣。此時在 焦點上的影像不再出現許多小光點,成為一個正常的星點。
- 隨後再多次微調主鏡座下方的三個光軸調整旋鈕,進一步確認星點細小光軸良好之下, 結束本次的光軸調整工作。

SOPHIA 送修後重新投入使用

2022 年 4 月 SOPHIA 相機溫度無法降至-80°C,一開始將設定溫度調高至-60°C 並繼續 使用。但過幾天後在拍攝時發現影像中有特殊圖形,將相機拆下檢查發現降溫時相機視窗內 側結露,因此研判為相機內部已經破真空,並且決定送修。但因疫情影響,電子零件缺貨使 相機花費一年多的時間維修。最後於 2023 年 5 月送回台灣驗收,初步測試結果均正常,本 預計於 LOT 2024A Semester 投入使用,但使用時遇到問題:

- 連線問題:在拍攝時若中斷相機曝光,時常發生導致相機當機,MaximDL 程式無回應, 重新開啟程式亦無法解決。僅能將相機電源重開,然後再重開程式連線相機。
- 2. 溫度顯示問題: 相機曝光時 MaximDL 的相機溫度顯示"No Cooler Control", 且 Header 中沒有寫入溫度資料。

這兩個問題一時無法解決,所以將 SOPHIA 暫緩使用,先又換回 Andor i-Kon 936 相 機。經過長時間測試與偵錯後發現,送修前與送修後 LOT 已更換電腦,並且由 Win10 更新 至 Win11 系統。新系統需使用新的 ASCOM Drive,在更換後測試順利解決連線問題,不會 再有相機當機問題。而溫度顯示問題雖然在曝光時一樣會顯示"No Cooler Control",但拍攝 的影像 Header 中會寫入溫度資訊,表示 Cooler 正常工作。確認 SOPHIA 可正常運作後於 2025/5/10 重新投入使用。

SmartDome 圓頂控制系統

SmartDome(2022) 圓頂控制系統 2024-09-08 因雷擊受損送修,暫時改用舊的 Smart-Dome(2004), SmartDome(2004) 存在以下幾個問題:

- LOT 圓頂的旋轉一圈讀數 (Encoder Counts per 360°) 固定為 65,535, 無法修改!正確 值應約為 64,xxx (搭配 360 P/R Encoder 時)。因此,圓頂與望遠鏡的連動存在些許誤 差。但由於 LOT 圓頂天窗開口比望遠鏡大兩倍,尚不至於遮蔽望遠鏡。
- 2. 受限於圓頂環形電軌的線路數,天窗開關訊號無法回傳至 SmartDome 主控制箱,導致 SmartDome 持續顯示"Main Shutter = Ajar"錯誤訊息。在使用 ACP 排程觀測時,MaxIm DL 不會等待圓頂連動到位就開始拍攝!需使用 ACE 特別修改的 SmartDome ASCOM (Rev. 305M) 軟體,忽略"Door = Ajar"的錯誤訊息,使 ACP 能正常觀測。(請注意,無論天窗實際開闢狀態如何,軟體中 Main Shutter 皆顯示為 OPEN。 另外,由於 SmartDome 控制器沒有天窗極限開闢訊號,因此仍會顯示 Door = Ajar 狀態。)

SmartDome (2004) 的線路獨立透過 PLC 控制,與 SmartDome (2022) 並存但不能同時 使用!將 SmartDome (2004) 的編碼器裝回後,測試 SmartDome ASCOM 軟體的 RS232 連 線正常,轉動圓頂時角度變化正常,但編碼器測試盒的指示燈號無法跳動,然而這不影響編 碼器的計數功能,編碼器測試盒是我們自己加裝的可考慮移除。

LOT UPS 更新

專供 LOT 使用的飛碟 FT-1060 6KVA 直立式不斷電系統 (2012 年啟用) 一停電很快就 沒電,因使用 12 年來沒換過電池,應該是電池失效,雖然 UPS 功能看來正常,經評估結果

(a)

(b)

LOT 220V 配電盤內配置如下,無熔絲開關 NFB 規格為 20A,配電盤到 UPS 中間沒有接其他設備。

Figure 12

LOT 220V 是採用「三相三線 (3 3W+G)」供電方式,計算方式:

上限負載 = 相電壓 × 最大相電流 × $\sqrt{3}$ × 寬餘度

87

其中, $\sqrt{3}$ = 1.732 ,寬餘度一般取 =1.3,三相中以電流最大之相為基準計算,220V 負 載耗電流 20A 時,220V×20A× $\sqrt{3}$ ×1.3 = 9.907VA,即 9.9kVA,所以用在 6kVA-UPS 是有餘 裕的,若是安裝 10kVA-UPS,極限剛剛好,但是我們 UPS 後方實際的負載沒那麼高,算是 可用。最後換新 UPS 機型為 FT-160H-T (6000VA/4800W) 直立型 5000VA 在線式 (ON-Line) 不斷電系統。

調整配重平衡

LOT 使用光譜儀時出現多次赤經東西向跳動,近期也出現幾次高緯度赤緯南北向跳動, 懷疑可能是更換儀器時未同步拆換配重所致,再加上更換新的濾鏡盤後並未調整配重,現統 計全部會使用的儀器重量,並統一測試配重。

1. 鬆開赤緯齒輪,查看赤緯方向平衡

1.1. 卸下東面齒輪室外蓋。

1.2. 鬆開背面四個固定螺絲,需注意避免滑牙。(Fig.13(a) 紅圈處)

1.3. 移除側面兩個彈簧及退開兩個輔助螺絲。(Fig.13(b) 紅圈與紅框處)

1.4. 手動推動鏡身看是否可以移動,且觀察齒輪是否有卡住。

(a)

(b)

Figure 13

- 2. 鬆開赤經齒輪,查看赤經方向平衡
 - 2.1. 打開望遠鏡南方齒輪室,用板手轉開螺帽,鬆開齒輪,請注意螺帽上紅線位置, 往逆時針轉約兩圈左右。(Fig.14)
 - 2.2. 推動鏡身看是否可以推動,並仔細聽齒輪處不應有摩擦異音。
- 3. 望遠鏡移往東西南北低空,並測試是否達到平衡 (Fig.15)。

Figure 14

4. 復原:

4.1. 赤經:注意輔助螺絲勿將齒輪迫太緊,背後固定螺絲避免滑牙。

4.2. 赤緯:注意螺帽紅線位置,約為十點鐘方向。

經調整後各儀器配重如下:

- SOPHOA2048+SmartFilter18+ 大延長筒 (27kg) or TRIPOL(24kg) 如 Fig.16(a) 所示 西北: 7 + 3 = 10kg 西南: 3 + 3 + 3 = 9kg 東北: 4.5 + 5 = 9.5kg 東南: 5 + 3 = 8kg
 LISA+AP 對焦座 (7kg) or UVEX+AP 對焦座 (7kg) 如 Fig.16(b) 所示 西北: 7kg 西南: 3 + 3 + 2 = 8kg
 - 東北: 4.5 + 5 = 9.5kg
 - 東南: 5kg

SLT

平場燈板

每年的4月至9月因為梅雨、鋒面、熱對流和颱風影響,為天文台較不適合觀測的季節。在這個季節容易遇到天光時刻有雲的狀況,以至於無法拍攝平場影像,更有曾經遭遇近 一個月完全無法拍攝天光平場。LOT 還有平場燈版與布幕等圓頂內平場可做為替代方案, 但 SLT 與 LWT 僅能等待天光時刻天氣好才能拍攝。光學系統可能因落塵造成光源到焦平面 的不均勻分佈,所以平場影像應盡量保持最新的觀測。

為了在雨季時讓 SLT 也能拍攝 flat,於是購置了可控強度的發光燈板,並在前面加三層 玻璃隔熱紙減光。發光燈板安裝於 SLT 圓頂內的鐵力士架上,使用前須先將望遠鏡指向移 動到東方地平以下,將鐵力士架推至望遠鏡旁,同時微調望遠鏡使鏡筒與燈板貼合 (圖17)。 移好之後要將室內燈關閉,然後依濾鏡調整發光強度。

Figure 17: SLT 平場燈板

發光燈板的強度由遙控器來控制,分別有色溫、亮度、及最暗的月亮模式。其中,色 溫模式有三鍾色溫,亮度模式有兩種亮度(但色溫是固定的)。建議以亮度模式"亮"的拍攝 B&zp,其他以亮度模式"暗"拍攝(表4)。Na 與 up 兩個濾鏡無法使用此燈板拍攝,需要利 用圓頂布幕打光來拍。

Filter	ExpTime(s)
Bright	Mode
В	10
zp	40

Table 4:	SLT	平場燈板	參考	參數
----------	-----	------	----	----

Dark	Mode
V,R,I,gp,rp,ip	5

Dome Home Sensor 底座加高

SLT 圓頂可能是因為停止時慣性的滑動,使得圓頂多次轉動後圓頂位置與電腦 AZ 數 值差異越來越大,最後可能導致圓頂位置與望遠鏡不同步而使望遠鏡受到遮擋,此時就需 要做 FindHome 使圓頂校正回歸。但在 SLT 圓頂控制系統更換為 ScopeDome 後,經常遇 到 FindHome 時圓頂已經觸碰到極限開關,但圓頂控制器卻沒有接收到 atHome 信號而無法 正常校正圓頂 AZ。經過反覆測試後發現,作為 Home Sensor 的極限開關長度太短,觸碰到 Home 的時間太短所以信號容易被忽略,於是在極限開關上綁上了一個竹筷來增長。

在正常運行一陣子後,某次觀測時發現極限開關被折斷,甚至整個底座歪斜(Fig.18(a))。 可能是因為極限開關鄉竹筷的位置卡住圓頂的 Home 標記處(Fig.18(b)),然後圓頂轉動讓整 個節構被掰歪。原本折斷的極限開關已無法使用,更換極限開關後為了解決過短問題,於是 利用 C 型夾將極限開關固定位置上移,將 Home 標記的增長螺絲改成套筒(Fig.18(c))。最後 測試圓頂轉動 atHome 時都能訊號正常,極限開關也不會折斷。

(a)

(b)

Figure 18

(c)

\mathbf{LWT}

LWT 濾鏡、濾鏡盤更換

饒老師希望在 LWT 安裝 SDSS y-band 濾鏡,但目前天文台僅有一塊,且已經安裝在 LOT Smart-Filter18。為了不時常拆卸,因此台長建議採購新的濾鏡。採購的六塊新濾鏡組 包含 SDSS up, gp, rp, ip, zp 與 yp。

5月8日更換濾鏡盤與饒老師購買的新濾鏡,因為新濾鏡盤無法直接安裝到現有濾鏡盤的接環上,所以將 Apogee 濾鏡盤接環更換成 RiFAST-400 望遠鏡原廠對焦座,然後再安裝 新的濾鏡盤。之後饒老師於9月19表示 LWT 影像有問題,影像中下方與左下方位置會有 類似失焦的星點變形。但當時並不知道這個可能是原廠對焦座的問題,所以將測試方向著重 於檢查安裝時是否有間隙、是否為對焦問題、back focus 調整是否正確等,但都無法真正解 決。

檢查歷史資料並對比更換濾鏡盤前後的影像發現,更換濾鏡盤後最早 (6/18) 的觀測影 像就已經開始有星點變形的問題,所以問題應出在濾鏡盤或原廠對焦座。所以最後將原廠對 焦座與新濾鏡盤更換回 Apogee 濾鏡盤與接環,並將新濾鏡移置於 Apogee 濾鏡盤中。

2025 年 3 月因清洗 LWT 主鏡,拆下 LWT 相機與濾鏡盤。林啟生助理注意到相機會晃動,並將一角螺絲鎖緊後,星點變形問題即解決。

LATTE

- LATTE 拿鐵望遠鏡是一台位於 TAOS-A 天文遮罩內的 50 公分望遠鏡 (PlaneWave CDK500 Observatory System),可完全遠端操作。其視場 (FoV) 為 44' × 33',並可 旋轉。像素比例為 0.45 角秒。提供濾鏡包括 Johnson-Cousins B、V、R、I 寬頻濾鏡、 H 和 [OIII] 5nm 窄頻濾鏡,以及可見光超寬頻透明濾鏡。BVRI 濾鏡為方形通帶。在 典型條件下,B、V、R 波段的 1 小時 5 極限星等 (Vega) 介於 22.5 至 23.2 之間。
- 2. 2024年5月LATTE進行了內部開放觀測測試,自2024C(9月)學期起正式開放給用 戶使用。提供最多20個夜晚的觀測時間,適用於暗夜與灰夜條件。在滿月期間,如觀 測計畫可容忍月光影響,則可額外提供更多觀測時數。
- 3. 在最初的幾個學期,先以共享風險模式提供觀測時間,讓使用者與 LATTE 熟悉操作。
- 4. 因 LOT 研究計畫滿載,建議鹿林教學觀測可多利用 LATTE!

RoLIFE 月撞閃光望遠鏡

 RoLIFE 月撞閃光望遠鏡原先使用的 CEM120 赤道儀因自動導入精度不足,月亮常不 在視場 FOV 中,遠端觀測困難。經與金門金城國中合作借用 Paramount ME 赤道儀, 解決了自動導入精度問題,並提高了儀器載重及觀測穩定性。

- 2. 2024 年 9 月 Paramount ME 赤道儀因雷擊 MKS-4000 主機板受損,2024 年 11 月更新 為 MKS-6000 控制系統,並加裝 USB 突波保護器以防雷擊。
- 3. ME 赤道儀 DEC 線路/面板基本不使用,拆除內部接 DEC 面板之舊線路。
- 注意 MKS-6000 控制系統軟體需更新至 TheSkyX 10.5.0 build 13655 之後版本,升級安 裝 TheSkyX 10.5.0 build 13878,開機測試連線 OK。
- 5. MKS-6000 不能用以前的馬達 RA/DEC Index 值,需重新測量!手冊說要拆掉 RA/ DEC 馬達皮帶做 RA/DEC Index 值,但 ME 赤道儀馬達皮帶實在很難拆@@@ RA/ DEC 馬達用手轉動感覺很平順並無明顯阻力,所以在不拆之下直接重新測量如下: RA Index=413, DEC Index=1731。
- 6. 測試追蹤 60sec=>OK,测試追蹤 120sec=>OK,测試追蹤 180sec=>OK,所以新的馬 達 Index OK 可用!
- 7. 看來 ME 赤道儀重新測量 RA/DEC Index 值不一定要拆馬達皮帶!

流星監測系統

- 1. 因 Watec WAT-902H2U 類比式攝影機停產,第1代流星觀測系統逐漸走入歷史。
- 開始測試第2代流星HD 觀測系統,使用 IMX327 AHD 攝影機 +4mm F0.95 鏡頭 +AHD 轉 USB3 影像轉換器,可以提供更廣視野及更高解析觀測資料,但資料量也增 加 5-10 倍。
- 3. IMX327 AHD 攝影機一體成形、價格較低,可以沿用原有線路及支架,安裝較為簡便。

(a)

(b)

Figure 19

- 4. 4mm F0.95 鏡頭有內建 IR-CUT 濾鏡,需移除 IR-CUT 濾鏡以增加靈敏度,移除 IR-CUT 濾鏡影像顏色會偏紅,可作為有無 IR-CUT 濾鏡之判斷。注意移除 IR-CUT 濾鏡 後失焦 => 去除鏡頭上固定焦點的膠 => 重新調焦 =>OK。
- 5. 採購時請廠商移除鏡頭的 IR-CUT 濾鏡、鏡頭不要上膠。
- 6. 軟體需改用 UFOCaptureHD2,可支援即時處理高達 4096x2160/60p 的未壓縮視訊。

其他軟硬體設施

Nas 即時上傳 google drive + FTPtoD

天文台的觀測資料一般都是在早上觀測結束後放入 FTP, 然後傳才會到天文所 Server 進行分送,所以 PI 要在隔天早上或中午才能拿到觀測資料。但有些 PI 無法上山,但又需要 即時拿到資料,才有辦法馬上知道是否需要調整,或是 ToO 目標需要馬上分析。在以前都 是利用 LINE 或是 Google Drive 手動上傳,但若有其他事務時,觀測助理可能沒辦法一直手 動上傳。

改成自動化上傳的模式可以減少觀測助理的作業,也能確保資料一直更新。QNAP NAS 中的 HBS 檔案備份同步中心 App 可以達到自動上傳功能。在 HBS App 中建立單向同步工 作,使 NAS 中的「data_google_drive」資料夾同步至 Google Drive 中,並設定排程使其 2 分鐘執行一次同步工作。這樣將需要即時上傳的資料存入 data_google_drive 後就會自動上 傳至 Google Drive 中。

為了使 Google Drive 中的資料更簡單地共享給 PI,存入 data_google_drive 的資料結構 需為「PI_name/\$datenite/PI_name/filename」(如圖20),這樣將僅需將最外層的 PI_name 資料夾共享給 PI 即可。

Figure 20: data_google_drive 資料夾中的結構

因為資料並非儲存在各台望遠鏡 PC 的 D 槽中,所以每天結束觀測時需要再將資料複 製回到 D 槽中。另外但因為現在天文所的 Google Drive 有限制空間,所以需要定時人工刪 除 Google Drive 與 data_google_drive 中的舊檔。若沒有將資料複製回 D 槽,又將 Google Drive 與 data_google_drive 的檔案刪除,檔案將永久刪除。為了避免此情況發生,於是利 用建立一個 FTPtoD.bat,此 Windows 批次檔可以將 data_google_drive 中當天的資料複製 回各別望遠鏡的 D 槽中,另外再搭配工作排程器定時於每天早上 6 點時執行。

4G 新天線安裝

天文台的網路架構是透過 4G 路由器接收 4G LTE 無線訊號,並轉接至各處設施使用。 原本 4G 路由器設置於 LOT 電腦機房內,但在 2022 年 4 月時出現網速嚴重下降的問題,推 測可能是基地台訊號減弱所致。為改善情況,當時將路由器移至靠近基地台的 TAOS-D 內 部,移機後網速明顯回升,因此該裝置便持續設置於 TAOS-D。然而,隨後基地台的訊號強 度或方向可能再次調整,導致 TAOS-D 的訊號接收狀況變差。該位置的平均網速約為上傳 20 Mbps、下載 40 Mbps,有時甚至更低。這種情況可能與「燈塔效應」有關,亦即訊號在 接近基地台處可能出現死角,導致接收強度反而較弱。

後來新購一組 4G 24dB LTE 室外型定向天線,因此將原本的 4G 路由器移至控制中心, 搭配新天線使用。天線安裝於控制中心東側牆面(如圖 18 所示),此一配置使網路速度提升 至上傳約 40 Mbps、下載約 80 Mbps。此外,另加裝一台不斷電系統(UPS)作為路由器的 電源供應,以防止因電力不穩造成路由器重啟與網路中斷。由於 4G 網路偶爾仍會無預警斷 線,且需斷電重啟路由器才能恢復連線,後續透過啟用「Keep WAN Connection」功能,使 路由器可自動檢查連線狀態並在偵測到斷線時自動重連,成功解決此問題。

Figure 21: 新 4G 24DB LTE 室外平板定向天線

智慧插座

原本放置在各個望遠鏡的除濕機都是用插座定時器來自動開關,但機械式的定時器運行 久了後時間會不同步,造成在觀測時反而開著除濕機的情況。後來購置數個智慧插座,可以 聯網再使用手機 App 設定,除 LOT 外的望遠鏡除濕機定時於早上 6:45 開,下午 5:15 關。 而 LOT 除濕機僅定時於早上 6:45 開,但不設定定時關閉。手機 APP 也可以直接控制開關, 無須再到現場控制。

LOT 平場燈板的高空作業機為鉛蓄電池供電,需時常充電,不然需要用時可能沒電無法升高。但高空作業機插電後,如果電池充滿就會自動斷電,很有可能又會放置到電池沒電。因此也將高空作業機接上智慧插座,並設定早上7點至9點開起充電。

AutoFTP NAS 更換硬碟

AutoFTP NAS 目前用於儲存非觀測資料,如:ALLSKY 備份、文件表格、參觀照片等。 NAS 於 1/29 出現錯誤訊息「HDD 8 異常」,9/25 出現錯誤訊息「HDD 4 ejected 與 HDD 7 異常」。經置換新硬碟並自動重建 RAID 後即正常運作。

電腦群遭受勒索病毒攻擊與處置

發現:8/27 發現 LD 電腦桌面出現勒索病毒訊息,緊急清查山上所有電腦,發現 LC 與 LWT 防毒軟體偵測到病毒,ALLSKY 電腦也因中毒開始加密資料,而加密後的資料被視為 新資料被傳輸下山。

緊急處置:拔除所有電腦網路線並徹查是否中毒,並通報所上資安人員。資安人員建議 若懷疑電腦中毒則:

- 1. 備份重要的資料
- 2. 重灌主機
- 3. 將資料倒回

後續處理:

- 1. LWT 電腦:緊急關機,置換系統碟,並清除資料碟,把先前觀測資料回灌。
- 2. LC、LD 電腦:拔除網路線,重灌電腦。
- 3. ALLSKY 電腦重灌,並通知山下檢查檔案。
- 4. 因懷疑是 anydesk 遠端軟體有漏洞導致,加上已少用,所以將所有電腦的 Anydesk 全部移除。
- 5. 檢查並將所有電腦安裝防毒軟體並完整掃毒。

其他

玉管處木棧道止滑防滑施工

鹿林前山木棧道若下雨時容易滑倒,感謝玉管處於 2024 年 3 月 26 日於鹿林前山木棧道 實施止滑防滑改善施工,於木棧道釘上止滑膠條。

(a)

(b)

Figure 22

鹿林天文台及周邊設施防火帶建置林木移除作業

天文台座落於山林之中,四周環繞著大量樹木,這些植被在乾燥季節易成為燃料來源。 由於當地冬季降雨稀少,空氣乾燥,一旦鄰近地區發生野火,極可能威脅天文台的安全。 2021 年 3 月的阿里山森林火災及 2022 年美國野火延燒至基特峰天文台的事件,正是值得我 們警惕的前車之鑑。為了防止林火對天文台造成危害,應在天文台建築周遭採取 3R 森林火 災防禦空間,所謂的 3R 是:

1. 移除 (Removal): 對燃料進行移除,如死亡的樹木或易燃的灌木這類植物。

2. 減少 (Reduction): 減少植物的局部,如移除較低的樹枝、樹木死亡局部以及乾枯的草。

3. 取代 (Replacement): 以較不易燃燒的植株取代易燃的植株。

其他

Figure 23: 鹿林天文台 3R 森林火災防禦空間意示圖

鹿林天文台自 2001 年起著手規劃森林防火工作,並與相關林木管理單位協調,希望在 天文台周圍建立森林火災防禦空間。然而,由於涉及單位眾多,溝通進度緩慢,直至 2019 年才正式展開周邊設施防火帶建置與林木移除作業,並於 2024 年底完成 15 公尺寬的野火防 禦空間。圖 24 顯示作業前後的對照情形。

(a)

(b)

(c)

(d)

(e)

(f)

Figure 24: 作業前後對照圖

架設臨時索道、設備更換與廢品清運

2024 年 9 月進行林木移除作業時, 倒下的樹木不慎壓毀天文台的 5 噸水塔,導致儲水 量大幅減少,對天文台運作影響甚鉅。尤其在冬季,若管線結冰,可能長達兩週無法抽水, 因此須盡快更換水塔,因此須盡快更換水塔。然而 10 噸水塔體積龐大,無法以人力搬運上 山,需架設索道運輸。但索道建設成本高昂,因此計畫同步清運天文台內的大型廢棄物,並 運送需更換的設備上山,以提高運輸效率。

天文台原有的不鏽鋼水塔採腳架支撐,為降低未來因地震等因素導致損壞的風險,將全 面改為塑膠儲水桶。原本的木製床架因長年使用,部分螺絲鬆動,存在安全疑慮,因此將全 面更換為更穩固耐用的鐵製床架。此外,部分座椅已經歪斜,布面表皮破損,將添購數張新 椅子替換。同時,室外流動廁所因颱風損壞,也將一併更新。除了更換設備外,也將一些大 型、超重之廢棄物,與報廢儀器(如以未使用的 CCD 冷卻水設備、TAOS 計畫遺留下的電 池等)一併運下山報廢處置。

Figure 25: 臨時索道山下端

Figure 26: 臨時索道山上端與準備運下山的水塔

鹿林天文台停電 SOP

停電 SOP

- 1 預警停電(台電有事先通知)
 - Email 通知山上的使用者停電日期、起迄時間等訊息:Lulinstaff, LATTE(王為豪)、RIFT(李君樂)、RoLIFE(林宏欽)、TAOS D(林宏欽)、 LABS 背景測站(邱佳陽)、太空所(劉正彦)
 - 1.2 停電時間若為白天,於當天結束觀測後執行關機(不拍 dark、bias)
 - 1.3 其他時間:停電前一小時執行關機
- 2 無預警停電(台電沒通知)
 - 2.1 望遠鏡若正在觀測,請立即停止觀測,將望遠鏡 PARK 歸位並關閉圓 頂。
 - 2.2 若 10 分鐘內無復電,請將各 PC 關機。
 - 2.3 若為白天停電,請駐站助理視情況叫醒觀測助理處理。
 - 2.4 因LOT 圓頂沒有不斷電系統,若遲遲沒有復電,請叫醒駐站人員幫忙 手動關閉天窗!

復電 SOP

- 1. 檢查關機清單內所有電腦是否開機
- 注意 lulindatab (8.6) 與 web-test-server(8.140) 必須在其他電腦(包含 AutoFTP)都開機完成後再開機
- 3. 所有電腦依照各台望遠鏡之 SOP 開啟程式、檢查校時
- 4. 檢查天文台網路、各電腦網路是否正常
- 5. 氣象電腦:重啟 dome 內的氣象主控台,開啟各程式,並確認 WeatherLink 時 間設定正確, Clarity 不用檢查設定
- 6. 請 JK or WJ 檢查網路傳輸,及 email 通知各使用者復電訊息
清單

Windows 系統

- AUTOSLEW-PC
- LOT-PC
- SLT-PC
- LWT-PC
- □ 流星-PC N/E/S/W/HD-NE/HD-SW 共6台
- AllSky-PC
- U Weather PC

非 Windows PC (若是預警停電請通知 JK、WJ 關機,或是強制關機)

- lulindatab (8.6) (長按電源,強制關機)
- □ WJ-web-test-server(8.140) (長按電源,強制關機)

Nas (長按 power 使之進入關機程序)

- LWTdata(8.34)
- AutoFTP(8.2)

IV 新聞媒體報導

歷年媒體新聞統計 (1998-2024)

1998 年至 2024 年中大天文所與鹿林天文台的相關新聞媒體報導統計如下:

Figure 27: 中央天文所與鹿林天文台相關新聞報導統計 (1998-2024)

新聞媒體報導

火星探测邁向 60 週年 天文館特展探 索奧秘

發布日期:2024-12-16 新聞來源:line today

記者劉昕翊/臺北報導

為紀念火星探測邁向 60 週年非凡成就,臺 北市立天文科學教育館與國立中央大學天文 研究所聯手推出「旅行到火星」特展,明 (13)日起至明年2月9日登場,不僅為天 文愛好者提供難得的知識饗宴,更融入 STEAM 教育元素,規劃火星車操作及 AR 擴 增實境體驗,讓民眾以互動形式探索火星奧 秘,獲得嶄新的參觀體驗。

自 1965 年水手 4 號成功飛掠火星並傳回首 批影像以來,火星探測歷經技術創新與科學 突破;臺北天文館表示,此次特展以火星探 測 60 週年為核心,展示探測器累積的豐富 資料與挑戰,並剖析這些成就如何推動人類 對火星的認知與未來規劃,帶領大眾深入了 解從早期觀測,到當代科技如何拓展對火星 的理解,以及展望未來人類踏上火星的壯 舉。

此外,臺北天文館還將舉辦9個梯次「旅行 到火星」假日特別導覽活動,內容涵蓋特展 導覽與宇宙探險體驗,進一步拓展參觀者的 火星探索知識,歡迎民眾至臺北天文館官網 「活動報名」專區選擇適合的梯次參加。

相關連結

 <u>https://today.line.me/tw/v2/arti</u> <u>cle/0Mge39p</u>

科學人/聚焦10大科學議題 在日照 最短那天與專家面對面交流

發布日期: 2024-11-25

新聞來源:聯合新聞網

我們總算走出世紀病毒 COVID-19 的陰霾, 而人工智慧(AI)的各式各樣應用正滲透你 我的生活與工作,量子科技彷彿瞬間從理論 落實到產線、並從世界湧向台灣……這兩 年,科技的急速進展令人目不暇給,科學研 究的每一個突破,都正在把未來帶到我們眼 前。

你應該沒錯過韋伯太空望遠鏡升空的實況轉 播,也聽聞太空衛星產業就要起飛;你長期 追蹤腦科學的最新進展,並不只因為攸關學 習、心智疾病;瀕危物種、碳權交易對你來 說,可能也不是什麼新鮮事。核融合、AI、 量子電腦,近年更受到社會各界、大眾媒體 的忠實讀者,從每個月的雜誌都能比別人更 早看到這些研究的每一步進展,還能讀到專 家的獨到評析。然而身為科學愛好者,你是 否渴望突破現有模式,渴望與專家、同好更 進一步交流?

《科學人》雜誌也力求自我突破。為讀者報 導最新科研成果、引介頂尖科學家的頭腦、 描繪未來趨勢,我們不再只透過紙本,數位 介面也不再只有文字與圖片,我們還要把 《科學人》立體化。為此,我們耗時一年半 精心規劃,選在今年12月21日舉辦「科學 人年會」,這將是一場別開生面的科學沙 龍,讓「科學人」活生生地面對每一位讀 者,讓每一位來到現場的讀者成為「科學 人」。

在科學人年會中,我們邀請了10位科學家 為大家解析10個重要的科學議題。由於科 學正即時影響著我們每一個人的生活、改變 著我們的社會,我們精選的這10個科學議 題也都是生活議題、是社會議題,我們希望 每一個人都能來了解。 10個議題短講之間還有由《科學人》總編 輯主持、引導的四節問答交流,交叉探討這 些議題。之後,我們聚焦AI,邀請多位專 家跨界分享應用AI的心得。

12月21日也是「冬至」,一年裡日照最短的一日,代表著萬物走到最低點,一切即將反轉,因此科學人年會不僅回顧過去,也將展望未來。在參加年會之前,邀請你先透過這篇短文以及其中提及的篇章,預習也複習這些科學議題。

仰望蒼穹,一起高飛

人類自上古時代即仰望星空,思索著我們在 宇宙中的定位,這是哲學問題,也是科學問 題。從天文曆法到宇宙膨脹,天文觀測是科 學的先鋒,<u>〈韋伯開啟天文學新紀元〉</u>已為 人類帶來嶄新的視野。而在年會中,中央大 學天文所教授陳文屏將結合跨領域的科技知 識,以更宏觀的人文視角,告訴你天文學家 如何「透視宇宙天體的本質」。

探險是人類的天性,能夠飛離地球航向太空,一直被視為人類科技的重大里程碑。不 過,在人們越來越倚賴無線通訊服務的今 日,太空科技有了更明確的發展目標。火箭 阿伯吳宗信曾在<u>〈台灣火箭產業高飛〉</u>剖析 為什麼我們需要擁有發射火箭的能力,現為 國家太空中心主任的他,在年會中將更完整 介紹何謂太空工程,何以「全球太空浪潮 台灣不缺席」?

探索你的心智與性別差異

「人之異於禽獸者,幾希矣!」中央大學認 知神經科學研究所教授吳嫻為腦科學下了這 樣的註解。《科學人》長期並大量報導語 言、認知、意識、大腦與行為的相關研究, 也比較人類與其他物種這些能力上的相似與 差異處,吳嫻在<u>〈AI 無法取代的數感〉</u>之後,將以「話說腦科學,看見數與美」帶領 我們再探人類心智的深處。

腦科學中另一個引起大家關心的主題則是睡眠。睡眠不只涉及腦科學、心理學,更是健康生活裡非常重要的一件事,畢竟我們一輩子花在睡覺的時間,少說也有三分之一!請先一讀<u>〈好好睡去,聰明醒來〉</u>,再來聽「連睡覺都能很科學」,《哇賽心理學》總編輯蔡宇哲將告訴你一夜好眠的最新科學方法,讓你在專注與放鬆之間找到最完美的節奏。

在今年的巴黎奧運,性別生物學引起了極大 的爭論。性別議題不只是社會、文化議題, 近年在生物學、醫學、演化都是熱門的研究 主題。男腦女腦有差異?XY、XX 染色體到 底影響了什麼?<u>〈女子,獵者也〉</u>從生理 學、考古學全面抽絲剝繭。生物人類學者、 《科學人》編譯委員王道還將在「女力的演 化之路」中,告訴你人類的兩性差異是否有 生理學的基礎?

珍愛地球萬物,也要看懂碳匯

生態保育是一件吃力不討好的工作,搶救瀕 危物種這任務雖然急迫,但在地狹人稠的台 灣,屢屢與社會經濟發展發生衝突。屏東科 技大學野生動物保育研究所教授黃美秀將在 「我愛台灣黑熊」告訴你黑熊的一切,並深 入解釋:為什麼物種保育是提升生物多樣 性、維繫生態平衡的危機科學。

全球暖化是既定事實,減少溫室氣體排放不 能淪為口號,我們能否藉由經濟誘因來推動 環境永續?中興大學森林系教授柳婉郁將在 「自然碳匯與淨零排放」中,從生物學、生 態學、社會學與經濟學的角度解釋什麼是自 然碳匯,我們要如何達成淨零排放? 走出科幻小說,科學打造未來

人類對於能源的需求持續成長,發展更乾 淨、效率更高的供電方式才是正解。<u>〈在地</u> <u>球上製造恆星〉</u>宣告了可控核融合反應的重 大突破,核融合發電可望在20年內實現。 核融合與核分裂有何不同?工程上有何難 度?「核融合,潔淨能源的聖杯」讓我們聽 聽電漿物理專家、中央研究院院士李羅權怎 麼說。

人工智慧一直是科幻小說的題材,如今已是 現在進行式。你可以大方享受 AI 帶來的便 利與服務,也可以進行更深度的哲學思考: AI 有意識嗎?近年《科學人》對於 AI 的討 論相當頻繁,你知道「AI 的『智慧』哪裡 來?」,台灣大學資訊工程系教授陳溫儂將 從大型語言模型 (LLM) 談起,告訴你怎麼 訓練電腦。

另一個走出科幻小說、從理論化為實際的物 理研究,就是量子電腦。量子力學一度是哲 學問題,然而量子現象獲得證實,科學家以 各種材料設計製作量子位元,就能進行量子 運算。台灣大學物理系教授張慶瑞在<u>〈第二 次量子革命〉</u>深入淺出介紹這些進展,「當 量子電腦遇見人工智慧」又將打造什麼樣的 未來?讓我們拭目以待。

何必擔心被AI 取代?

10 場精采短講、四節專場交流之後,年會 最後將聚焦回到 AI 這個熱門話題。

AI 有各式各樣的應用,可幫助各行各業, 滿足各種需求。想知道科學家如何運用 AI?「AI 跨界論壇」由《科學人》前總編 輯林一平教授主持,邀請專研粒子物理的台 灣大學物理系教授陳凱風、精通病毒突變的 清華大學學士後醫學系教授王慧菁、中國醫 藥大學附設醫院心臟科醫師同時也是 AI 中 心主任張詩聖,以及台灣人工智慧學校校務 長蔡明順,將依序與大家分享「AI 是超大 量實驗資料的好朋友」、「病毒變變變, AI 來神算」、「當醫生與 AI 聯手看病」、 「讓 AI 成為企業與你的第二大腦」。

林一平教授本身也是 AI 專家,他期許透過 這場論壇,讓每位科學人了解如何善用 AI,讓 AI 幫助我們在自己的專業領域更上 一層樓。

科學的維度

科學研究的進展時而突飛猛進、遍地開花, 時而淤滯受阻、甚至宣告終結。身為《科學 人》忠實讀者,你一定也會好奇:若從更長 遠的時間尺度,我們該如何看待這些科學議 題?

創刊 20 多年的《科學人》雜誌要走出紙 本、要立體化,並非口號。在科學人年會的 一開場,《科學人》前總編輯李家維與現任 總編輯孫維新兩位教授,將以「科學相聲二 人組:繁星蒼穹下的神鬼人生」為題進行一 場實驗性演出,他們將創造出什麼樣的時空 維度?孫維新教授說他不知道。說相聲,當 然不能先破哏,李家維教授神秘地說:「我 們台上見!」

相關連結

https://udn.com/news/story/6904/ 8379851?from=udn_ch2_me...

臺北天文館「業餘天文研討會 搭建多 元交流平臺

發布日期:2024-11-25 新聞來源:Yahoo!新聞

記者劉昕翊/綜合報導

為讓大眾進一步認識臺灣的業餘天文發展, 並促進天文同好之間的交流,<u>臺北市立天文</u> <u>科學教育館將於12月14日9至17時舉辦</u> 113年「業餘天文研討會」,匯聚學者、天 文團體、學校社團等,搭建交流平臺,互相 分享及發表天文相關資訊;活動免費報名, 名額有限,歡迎天文迷把握機會至官網報名 參加。

113年「業餘天文研討會」以「壯遊太陽 系」為主題,聚集多領域人員參與,策劃2 場大會演講、分組討論議程等環節,其中, 大會演講由中央大學天文所博士林家龍主講 「低質量恆星閃焰研究與業餘天文觀測」, 以及中研院環境變遷中心博士潘康嫻主講 「原住民的太陽傳說」;分組討論議程則邀 請全國各地天文民間團體代表及業餘天文人 士共10位講者,就高解析力窄頻光譜太陽 觀測、平價天文觀測設備介紹、高感光度流 星監測、小行星與彗星搜尋、日全食與極光 等多項主題,和與會者進行經驗交流及討 論。

臺北天文館表示,113年業餘天文研討會即 日起開放報名,全程參與研習的公教人員還 可獲得5小時研習時數,歡迎大眾踴躍報 名,深入了解臺灣業餘天文界的蓬勃發展與 生動魅力。餘詳細資訊民眾可至臺北天文館 官網查詢。

臺北市立天文科學教育館將於12月14日舉 辦113年「業餘天文研討會」,以「壯遊太 陽系」為主題搭建交流平臺。

相關連結

<u>https://tw.news.yahoo.com/%E8%87</u>
%BA%E5%8C%97%E5%A4%A9%E...

迎接紫金山—阿特拉斯大彗星 中央大 學天文所系列活動 10/18 展開 發布日期:2024-10-17 新聞來源:ETtoday 新聞雲

記者楊淑媛/桃園報導

中央大學天文研究所將於10月18日舉辦一 系列天文活動,迎接近年最亮的彗星 C/2023 A3(紫金山-阿特拉斯),活動邀 請到兩位天文專家,賴彥霖博士與林忠義博 士帶領民眾認識彗星,並介紹與彗星相關的 探測任務。主辦單位提供望遠鏡供民眾進行 彗星觀測,在天氣良好的情況下,有機會親 眼見證這顆罕見的彗星。

C/2023 A3 (紫金山-阿特拉斯)彗星的出 現,為天文愛好者帶來了一次難得的觀測機 會。彗星被發現時,初步推測亮度可達 0 等。隨著觀測數據的增加,天文學家對它的 亮度預測進行了修正,彗星的亮度比預期還 暗,但仍為近年發現的最亮彗星。它於 10 月 12 日通過近地點,此後在日落後可於西 南方的天空短暫可見。隨著時間的推移,彗 星的仰角逐漸增高,其亮度也會逐漸減弱。 10 月 20 日前的傍晚被認為是最佳的觀測時 機,天文所建議有興趣的民眾把握這段時間 進行觀測。

為了迎接紫金山—阿特拉斯彗星的到來,天 文所推出一系列天文活動。中央大學表示, 此次活動不僅為天文愛好者提供了一次深入 探索的機會,更讓民眾能夠親身參與天文現 象觀測,是一次難得的學習經驗,邀請所有 對天文有興趣的朋友踴躍參加。

相關連結

• <u>https://www.chinatimes.com/realt</u> imenews/20230302002548-...

迎接紫金山—阿特拉斯大彗星 中央大 學天文所舉辦系列活動 發布日期:2024-10-16 新聞來源:中央通訊社

中央社訊息服務

中央大學天文研究所將於10月18日舉辦一 系列天文活動,迎接近年最亮的彗星 C/2023 A3(紫金山-阿特拉斯),活動包 含專家演講及望遠鏡觀測,讓民眾有機會親 眼見證這顆罕見的彗星。

C/2023 A3 (紫金山-阿特拉斯) 彗星的出 現,為天文愛好者帶來了一次難得的觀測機 會。彗星被發現時,初步推測亮度可達 0 等。隨著觀測數據的增加,天文學家對它的 亮度預測進行了修正,彗星的亮度比預期還 暗,但仍為近年發現的最亮彗星。它於 10 月 12 日通過近地點,此後在日落後可於西 南方的天空短暫可見。隨著時間的推移,彗 星的仰角逐漸增高,其亮度也會逐漸減弱。 10 月 20 日前的傍晚被認為是最佳的觀測時 機,天文所建議有興趣的民眾把握這段時間 進行觀測。

為了迎接紫金山—阿特拉斯彗星的到來,天 文所推出一系列天文活動。10月18日活動 邀請到兩位天文專家,賴彥霖博士與林忠義 博士帶領民眾認識彗星,並介紹與彗星相關 的探測任務。主辦單位提供望遠鏡供民眾進 行彗星觀測,在天氣良好的情況下,有機會 觀察到彗核及彗髮等彗星細節。

相關連結

 <u>https://www.cna.com.tw/postwrite</u> /chi/384194

中央大學天文所迎接紫金山—阿特拉斯 大彗星 發布日期:2024-10-16 新聞來源:大紀元

大紀元記者陳建霖台灣桃園報導

中央大學天文研究所將於10月18日舉辦一 系列天文活動,迎接近年最亮的彗星 C/2023 A3(紫金山-阿特拉斯),活動包 含專家演講及望遠鏡觀測,讓民眾有機會親 眼見證這顆罕見的彗星。

C/2023 A3 (紫金山-阿特拉斯)彗星的出 現,為天文愛好者帶來了一次難得的觀測機 會。彗星被發現時,初步推測亮度可達 0 等。隨著觀測數據的增加,天文學家對它的 亮度預測進行了修正,彗星的亮度比預期還 暗,但仍為近年發現的最亮彗星。它於 10 月 12 日通過近地點,此後在日落後可於西 南方的天空短暫可見。隨著時間的推移,彗 星的仰角逐漸增高,其亮度也會逐漸減弱。 10 月 20 日前的傍晚被認為是最佳的觀測時 機,天文所建議有興趣的民眾把握這段時間 進行觀測。

為了迎接紫金山—阿特拉斯彗星的到來,天 文所推出一系列天文活動。10月18日活動 邀請到兩位天文專家,賴彥霖博士與林忠義 博士帶領民眾認識彗星,並介紹與彗星相關 的探測任務。主辦單位提供望遠鏡供民眾進 行彗星觀測,在天氣良好的情況下,有機會 觀察到彗核及彗髮等彗星細節。

相關連結

 <u>https://www.epochtimes.com/b5/24</u> /10/15/n14350929.htm_ 迎接「紫金山-阿特拉斯」大彗星 中 央大學專家 10/18 帶領觀星

發布日期:2024-10-16 新聞來源:自由時報

記者李容萍/桃園報導

今年北半球的星空盛事,就屬迎接年度最亮 的紫金山彗星。國立中央大學天文研究所將 於18日舉辦系列天文活動,迎接近年最亮 的彗星 C/2023 A3 (紫金山—阿特拉斯), 活動包含專家演講及望遠鏡觀測,讓民眾有 機會親眼見證這顆罕見的彗星。

中央大學天文研究所表示,C/2023 A3 (紫 金山-阿特拉斯)彗星的出現,為天文愛好 者帶來了一次難得的觀測機會。彗星被發現 時,初步推測亮度可達0等。隨著觀測數據 的增加,天文學家它的亮度預測進行了修 正,彗星的亮度比預期還暗,但仍為近年發 現的最亮彗星。它於本月12日通過近地 點,此後在日落後可於西南方的天空短暫可 見。隨著時間的推移,彗星的仰角逐漸增 高,其亮度也會逐漸減弱。預計本月20日 前的傍晚被認為是最佳的觀測時機,天文所 建議有興趣的民眾把握這段時間進行觀測。

為了迎接紫金山—阿特拉斯彗星的到來,天 文所18日活動邀請到賴彥霖、林忠義兩位 博士天文專家,帶領民眾認識彗星,並介紹 與彗星相關的探測任務。主辦單位提供望遠 鏡供民眾進行彗星觀測,在天氣良好的情況 下,有機會觀察到彗核及彗髮等彗星細節。

此次活動不僅為天文愛好者提供一次深入探 索的機會,更讓民眾能夠親身參與天文現象 觀測,是一次難得的學習經驗,邀請所有對 天文有興趣的朋友踴躍參加。更多活動資 訊,可洽活動官網查詢。

<u>https://news.ltn.com.tw/news/lif</u> e/breakingnews/4831630

迎接紫金山「阿特拉斯」大彗星天文奇 景 中央大學舉辦系列活動

發布日期:2024-10-16 新聞來源:ETtoday 新聞雲

記者沈繼昌/桃園報導

國立中央大學天文研究所將於10月18日舉 辦天文觀測活動-迎接近年最亮的彗星 C/2023 A3(紫金山-阿特拉斯),活動邀 請天文專家賴彥霖、林忠義博專題演講及透 過望遠鏡觀測,讓民眾有機會親眼見證這顆 近年天際罕見的彗星造訪地球。

中央大學指出,C/2023 A3 (紫金山—阿特 拉斯)彗星的出現,將為天文愛好者帶來了 近年來相當難得觀測機會。這顆彗星被發現 時,初步推測其亮度可達0等。隨著觀測數 據的增加,天文學家對它的亮度預測進行了 修正,彗星的亮度比預期還暗,但仍為近年 發現的最亮彗星。它於10月12日通過近地 點,此後在日落後可於西南方天空短暫可 見。隨著時間推移,彗星的仰角逐漸增高, 其亮度也會逐漸減弱。10月20日前的傍晚 被認為是最佳觀測時機,天文所建議有興趣 的民眾把握這段時間進行觀測。

中央大學表示,為迎接紫金山一阿特拉斯彗 星的到來,天文所推出一系列天文觀測活 動,其中10月18日將邀請兩位天文專家, 賴彥霖與林忠義博士帶領民眾認識彗星,並 介紹與彗星相關的探測任務。主辦單位將提 供望遠鏡供民眾實際彗星觀測,在天氣良好 的情況下,有機會觀察到彗核及彗髮等彗星 細節。

相關連結

相關連結

• <u>https://www.ettoday.net/news/202</u> 41015/2835702.htm_

迎接紫金山—阿特拉斯大彗星 中央大 學天文所 10/15 舉辦系列活動

發布日期:2024-10-16 新聞來源:台灣好新聞

記者葉志成/桃園報導

中央大學天文研究所將於10月18日舉辦一 系列天文活動,迎接近年最亮的彗星 C/2023 A3(紫金山-阿特拉斯),活動包 含專家演講及望遠鏡觀測,讓民眾有機會親 眼見證這顆罕見的彗星。

C/2023 A3 (紫金山-阿特拉斯)彗星的出 現,為天文愛好者帶來了一次難得的觀測機 會。彗星被發現時,初步推測亮度可達0 等。隨著觀測數據的增加,天文學家對它的 亮度預測進行了修正,彗星的亮度比預期還 暗,但仍為近年發現的最亮彗星。它於10 月12日通過近地點,此後在日落後可於西 南方的天空短暫可見。隨著時間的推移,彗 星的仰角逐漸增高,其亮度也會逐漸減弱。 10月20日前的傍晚被認為是最佳的觀測時 機,天文所建議有興趣的民眾把握這段時間 進行觀測。

為了迎接紫金山-阿特拉斯彗星的到來,天 文所推出一系列天文活動。10月18日活動 邀請到兩位天文專家,賴彥霖博士與林忠義 博士帶領民眾認識彗星,並介紹與彗星相關 的探測任務。主辦單位提供望遠鏡供民眾進 行彗星觀測,在天氣良好的情況下,有機會 觀察到彗核及彗髮等彗星細節。

相關連結

• <u>https://www.taiwanhot.net/news/1</u> 083203/%E8%BF%8E%E6%8E%...

迎接紫金山—阿特拉斯大彗星 中大天 文所舉辦系列活動

發布日期:2024-10-16 新聞來源:經濟日報

經濟日報 曹松清

中央大學天文研究所將於10月18日舉辦一 系列天文活動,迎接近年最亮的彗星 C/2023 A3(紫金山-阿特拉斯),活動包 含專家演講及望遠鏡觀測,讓民眾有機會親 眼見證這顆罕見的彗星。

C/2023 A3 (紫金山-阿特拉斯)彗星的出 現,為天文愛好者帶來了一次難得的觀測機 會。彗星被發現時,初步推測亮度可達0 等。隨著觀測數據的增加,天文學家對它的 亮度預測進行了修正,彗星的亮度比預期還 暗,但仍為近年發現的最亮彗星。

它於10月12日通過近地點,此後在日落後 可於西南方的天空短暫可見。隨著時間的推 移,彗星的仰角逐漸增高,其亮度也會逐漸 減弱。10月20日前的傍晚被認為是最佳的 觀測時機,天文所建議有興趣的民眾把握這 段時間進行觀測。

為了迎接紫金山—阿特拉斯彗星的到來,天 文所推出一系列天文活動。10月18日活動 邀請到兩位天文專家,賴彥霖博士與林忠義 博士帶領民眾認識彗星,並介紹與彗星相關 的探測任務。主辦單位提供望遠鏡供民眾進 行彗星觀測,在天氣良好的情況下,有機會 觀察到彗核及彗髮等彗星細節。

此次活動不僅為天文愛好者提供了一次深入 探索的機會,更讓民眾能夠親身參與天文現 象觀測,是一次難得的學習經驗,邀請所有 對天文有興趣的朋友踴躍參加。

相關連結

 <u>https://money.udn.com/money/stor</u> y/5635/8294006_

強烈磁暴「數值較平常高15倍」 中 央大學捕捉到太陽無線電波爆

發布日期:2024-10-14 新聞來源:ETtoday 運動雲

記者許敏溶/台北報導

中央氣象署昨(10日)發布磁暴特報,預 估影響約54小時。建置台灣首座「太陽無 線電波觀測站」的中央大學,也從周三(9 日)就觀測到太陽風暴產生的各類型太陽無 線電波爆訊號,最大值高於背景值8到15 倍,但仍低於今年5月最高值25倍。中大 表示,這波磁暴將持續到明年,民眾還有機 會碰到類似這一兩天的狀況。

氣象署昨天發布磁暴特報,前氣象局長鄭明 典今天也在臉書表示,G5-強烈磁暴發生, 將影響無線電通訊、衛星定位準確度、電力 系統和太空飛行器操作系統。

中央大學團隊在中壢特高頻雷達站所建置台 灣首座「太陽無線電波觀測站」,繼今年5 月之後,日前再度在動態頻譜圖上,捕捉到 伴隨這一系列太陽風暴產生的各類型太陽無 線電波爆(solar radio burst)訊號。

負責該觀測站的中大太空科學與工程學系教 授楊雅惠今天指出,「台灣太陽無線電波觀 測站」是台灣目前第一個,也是唯一成功執 行太陽無線電波爆觀測任務平台。由於無線 電波爆會比太陽風結構更早到達地球,故可 作為惡劣太空天氣預警的參考資訊之一,而 團隊在9日就觀測到相關訊號,直到今天為 止,訊號強度高於背景值8至15倍,但比 今年5月10日前後最高達到25倍,這次的 強度略低。 中央大學天文所教授陳文屏也表示,由於太 陽表面的活動加劇,導致磁力重組,產生的 太陽風暴往地球接近,跟地球的地磁作用後 產生地磁風暴,這些帶電物質會跑向南北兩 極,進而對電力與通訊系統產生干擾,中高 緯度民眾也可看到極光,預估這一波地磁風 暴將持續到明年。

相關連結

 <u>https://www.ettoday.net/news/202</u> 41011/2833414.htm_

中央大學感念證嚴法師 頒贈 555802 小行星

發布日期:2024-10-04 新聞來源:今日新聞

[NOWnews 今日新聞]

1937 年出生的證嚴法師,秉持慈悲喜捨、 感恩及尊重愛的理念,倡導眾生平等,創辦 慈濟基金會。中央大學感念她的奉獻,校長 周景揚等一行人今(30)日前往花蓮縣,頒 贈編號 555802 證嚴(Chengyen)小行星給 她,期許她的精神能夠繼續影響世人。

慈濟創立超過半個世紀,長期致力推動慈善服務與急難救助,不分國家、種族、宗教、政治立場,迄今援助136個國家與地區,創辦人證嚴法師在慈善、醫療、教育、人文、國際賑災與環境保護工作不遺餘力,也讓國際看見台灣,促使許多民眾更加樂於行善。

周景揚表示,慈濟的精神根植在「慈悲」與 「智慧」,藉由關懷之心對待每個需要幫助 的人,證嚴法師以身作則,實踐這個精神在 社會各個層面,無論是對災後重建、醫療援 助、環境保護,還是貧困弱勢群體的關懷善 舉,慈濟的足跡無處不在,這次小行星的命 名,則是期許這份理念高掛天空,傳承世世 代代。

證嚴法師表示,何德何能接受這樣的榮耀, 都是來自全球慈濟人的投入,才能得到勉勵 禮物,慈濟創辦之初是從日存五毛錢、花蓮 縣訪貧關懷開始,50多年後的如今,每天 面對國際的事情,透過科技對話全球慈濟人 了解慈善足跡。中央大學提到,證嚴法師透 過自己曾與太空人的對話,以及全球慈濟人 關懷擁抱受災者的故事,闡述佛法的真空妙 有。證嚴法師也說,感恩大家共同感受這份 鼓勵,慈濟要更積極、邁向永續。

中央大學指出,提出證嚴小行星命名後已通 過國際天文學聯合會(International Astronomical Union, IAU)的小天體命名 工作組(Working Group Small Bodies Nomenclature, WGSBN)審查,正式發布在 今年8月15日出版的第4卷第11期《小天 體命名公告》(WGSBN Bulletin Volume 4,#11),其中證嚴小行星編號555802, 2007年6月6日是由中央大學鹿林天文台 的林啟生、美國馬里蘭大學的葉泉志博士共 同發現,大小約為1公里,繞行太陽1圈 3.63年(軌道週期),距離太陽最近(近 日點)2.77億公里,最遠(遠日點)則為 4.31億公里。

中央大學分享,2006 年施行的鹿林巡天計 畫,就曾發現台灣史上第1顆彗星,同時找 到 800 多顆小行星,也讓台灣成為亞洲發現 小行星最為活躍的地方之一,而且卓越的天 文研究成果,充份展現台灣人以小搏大、努 力不懈的精神,期許透過證嚴小行星的命名 與頒贈,感恩慈濟「大我無私、大愛無痕」 精神,淨化人心、祥和社會。

相關連結

<u>https://tw.news.yahoo.com/%E4%B8</u>
%AD%E5%A4%AE%E5%A4%A7%E...

小行星以證嚴上人命名 慈悲智慧遍虚 空

發布日期:2024-10-01 新聞來源:大愛新聞

2010年,中央大學將發現小行星命名為 「慈濟」。為感念證嚴法師秉持慈悲喜捨、 創辦慈濟基金會之奉獻,以鹿林天文台發現 之編號555802小行星,命名為 「Cheng yen」(證嚴上人),向「國際天 文學聯合會」

相關連結

 <u>https://www.youtube.com/watch?v=</u> fnVnMQkxnR8

編號 555802 小行星 中央大學命名證 嚴 (Chengyen) 小行星

發布日期:2024-10-01 新聞來源:自由時報

記者林曉雲/台北報導

中央大學將所發現編號 555802 小行星,命 名為證嚴(Chengyen)小行星,校長周景揚 及前教育部長蔣偉寧等一行人今(30)日前 往花蓮,頒贈編號 555802 證嚴 (Chengyen)小行星給證嚴法師。

周景揚說明,證嚴法師出生於1937年,秉 持慈悲喜捨、感恩及尊重愛的理念,倡導眾 生平等,創辦慈濟基金會,中央大學感念其 奉獻,也期許證嚴法師的精神能夠繼續影響 世人。 中大校方說明,證嚴小行星命名提出後,經 國際天文學聯合會(IAU)小天體命名工作 組(WGSBN)審查通過,今(2024)年8月 15日出版的第4卷第11期「小天體命名公 告」正式發佈。

證嚴小行星編號 555802,是在 2007 年 6 月 6 日,由中央大學應林天文台專任助理林啟 生及美國馬里蘭大學博士葉泉志共同發現, 大小約1公里,繞行太陽一圈 3.63 年 (軌 道週期),離太陽最近時(近日點)為 2.77 億公里,最遠時(遠日點)為4.31 億 公里。

周景揚表示,慈濟的精神根植於「慈悲」和 「智慧」,以關懷之心對待每一個需要幫助 的人。證嚴法師以身作則,將這一精神實踐 於社會各個層面,無論是對於災後重建、醫 療援助、環境保護,還是貧困弱勢群體的關 懷,慈濟的足跡無處不在,此次小行星的命 名,期許這份理念能高掛天空,世世代代傳 承。

證嚴法師表示,得到這麼大的勉勵禮物,是 全球慈濟人的投入,從日存五毛錢、從花蓮 訪貧關懷開始,50多年後,每天面對國際 間的事情,透過科技與全球慈濟人對話,了 解慈濟人的慈善足跡,他也以自己曾與太空 人的對話,以及全球慈濟人關懷擁抱受災者 的故事,闡述佛法的真空妙有,很感恩大家 共同感受到這份鼓勵,慈濟要更積極、邁向 永續。

中央大學從 2006 年開始鹿林巡天計畫,曾 發現台灣史上的第一顆彗星,也發現 800 多 顆小行星,使台灣成為亞洲發現小行星最活 躍的地方之一。

相關連結

 <u>https://news.ltn.com.tw/news/life/b</u> reakingnews/4815723

大我無私,大愛無痕 中央大學頒贈證 嚴(Chengyen)小行星

發布日期:2024-10-01 新聞來源:蕃薯藤

證嚴法師出生於 1937 年, 秉持慈悲喜捨、 感恩及尊重愛的理念, 倡導眾生平等, 創辦 慈濟基金會。中央大學感念其奉獻, 不畏颱 風來襲, 9月 30 日校長周景揚等一行前往 花蓮, 頒贈編號 555802 證嚴 (Chengyen) 小行星給證嚴法師, 期許證嚴法師的精神能 夠繼續影響世人。

慈濟創立逾半個世紀,長期致力推動慈善服 務與急難救助,不分國家、種族、宗教與政 治信仰,迄今援助136個國家與地區。其創 辦人證嚴法師於慈善、醫療、教育、人文、 國際賑災和環境保護工作的努力不遺餘力, 讓國際看見臺灣,也促使許多人更加樂於行 善。

中央大學周景揚校長表示,慈濟的精神根植 於「慈悲」和「智慧」,以關懷之心對待每 一個需要幫助的人。證嚴法師以身作則,將 這一精神實踐於社會各個層面,無論是對於 災後重建、醫療援助、環境保護,還是貧困 弱勢群體的關懷,慈濟的足跡無處不在,此 次小行星的命名,期許這份理念能高掛天 空,世世代代傳承。

證嚴法師謙稱地說,何德何能可以接受這樣 的榮耀。今天得到這麼大的勉勵禮物,都是 全球慈濟人的投入。慈濟剛創辦時是從日存 五毛錢開始,從花蓮訪貧關懷開始,五十多 年後,如今每天面對著國際間的事情,透過 科技,與全球慈濟人對話,了解慈濟人的慈 善足跡。證嚴法師以自己曾與太空人的對 話,以及全球慈濟人關懷擁抱受災者的故 事,闡述佛法的真空妙有。證嚴法師說,很 感恩大家共同感受到這份鼓勵,慈濟要更積 極、邁向永續。

證嚴小行星命名提出後,經國際天文學聯合 會(International Astronomical Union, IAU)的小天體命名工作組(Working Group Small Bodies Nomenclature, WGSBN)審查 通過,於2024年8月15日出版的第4卷第 11期《小天體命名公告》(WGSBN Bulletin Volume 4,#11)正式發佈。證嚴小行星,編 號555802,2007年6月6日由中央大學鹿 林天文台林啟生及美國馬里蘭大學的葉泉志 博士共同發現,大小約1公里,繞行太陽一 圈 3.63年(軌道週期),離太陽最近時 (近日點)為2.77億公里,最遠時(遠日 點)為4.31億公里。

中央大學從 2006 年開始的鹿林巡天計畫, 不但曾發現台灣史上的第一顆彗星,同時也 發現了 800 多顆小行星,使台灣成為亞洲發 現小行星最活躍的地方之一。卓越的天文研 究成果,充份展現台灣人以小搏大、努力不 懈的精神。期許透過證嚴小行星的命名與頒 贈,感恩慈濟「大我無私、大愛無痕」精 神,淨化人心、祥和社會。

相關連結

 <u>https://n.yam.com/Article/202409</u> 30470207

大我無私大愛無痕 中央大學頒贈證嚴 小行星

發布日期:2024-10-01 新聞來源:Yahoo!新聞

青年日報社

2024年9月30日週一上午12:00

記者湯平/花蓮報導

證嚴法師秉持慈悲喜捨、感恩及尊重愛的理 念,倡導眾生平等,創辦慈濟基金會。中央 大學感念其奉獻,校長周景揚等一行人三十 日前往花蓮,頒贈編號五五五八()二證嚴 (Chengyen)小行星給證嚴法師,期許其精神 能夠繼續影響世人。

戀濟創立逾半個世紀,長期致力推動慈善服務與急難救助,不分國家、種族、宗教與政治信仰,迄今援助一百三十六個國家與地區。周景揚校長表示,慈濟的精神根植於「慈悲」和「智慧」,以關懷之心對待每一個需要幫助的人。證嚴法師以身作則,將這一個需要幫助的人。證嚴法師以身作則,將這一個需要幫助的人。證嚴法師以身作則,將這一個需要幫助的人。證嚴法師以身作則,將之之後重建、醫療援助、環境保護,還是貧困弱勢群體的關懷,慈濟的足跡無處不在,此次小行星的命名,期許這份理念能高掛天空, 世世代代傳承。

證嚴法師表示,得到這麼大的勉勵禮物,都 是全球慈濟人的投入。慈濟剛創辦時是從日 存五毛錢開始,從花蓮訪貧關懷開始,五十 多年後,如今每天透過科技,與全球慈濟人 對話,了解慈濟人的慈善足跡。很感恩大家 共同感受到這份鼓勵,慈濟要更積極、邁向 永續。

證嚴小行星命名提出後,經國際天文學聯合 會的小天體命名工作組審查通過,於今年八 月十五日出版的第四卷第十一期《小天體命 名公告》正式發佈。證嚴小行星二00七年 六月六日由中央大學鹿林天文台林啟生及美 國馬里蘭大學的葉泉志博士共同發現,大小 約一公里,繞行太陽一圈三點六三年(軌道 週期),離太陽最近時(近日點)為二點七 七億公里,最遠時(遠日點)為四點三一億 公里。 中央大學從二()()六年開始的鹿林巡天計 畫,不但曾發現台灣史上的第一顆彗星,同 時也發現了八百多顆小行星,使台灣成為亞 洲發現小行星最活躍的地方之一。期許透過 證嚴小行星的命名與頒贈,感恩慈濟「大我 無私、大愛無痕」精神,淨化人心、祥和社 會。

相關連結

<u>https://tw.news.yahoo.com/%E5%A4</u>
%A7%E6%88%91%E7%84%A1%E...

中大贈證嚴法師證嚴小行星

發布日期:2024-10-01 新聞來源:Yahoo!新聞

記者林有清 / 花蓮報導

證嚴法師秉持慈悲喜捨、感恩及尊重愛的理 念,倡導眾生平等,創辦慈濟基金會。中央 大學感念其奉獻,校長周景揚等一行人三十 日前往花蓮,頒贈編號五五五八〇二證嚴 (Chengyen)小行星給證嚴法師,期許證嚴 法師的精神能夠繼續影響世人。

慈濟創辦人證嚴法師於慈善、醫療、教育、 人文、國際賑災和環境保護工作的努力不遺 餘力,讓國際看見臺灣,也促使許多人更加 樂於行善。

校長周景揚表示,慈濟的精神根植於「慈 悲」和「智慧」,以關懷之心對待每一個需 要幫助的人。證嚴法師以身作則,將這一精 神實踐於社會各個層面,無論是對於災後重 建、醫療援助、環境保護,還是貧困弱勢群 體的關懷,慈濟的足跡無處不在,此次小行 星的命名,期許這份理念能高掛天空,世世 代代傳承。 證嚴法師謙稱表示,何德何能可以接受這樣 的榮耀,得到這麼大的勉勵禮物,都是全球 慈濟人的投入。慈濟剛創辦時是從日存五毛 錢開始,從花蓮訪貧關懷開始,五十多年 後,如今每天面對著國際間的事情,透過科 技,與全球慈濟人對話,了解慈濟人的慈善 足跡。證嚴法師以自己曾與太空人的對話, 以及全球慈濟人關懷擁抱受災者的故事,闡 這份鼓勵,慈濟要更積極、邁向永續。

證嚴小行星命名提出後,經國際天文學聯合 會的小天體命名工作組審查通過,於今年八 月十五日出版的第四卷第十一期《小天體命 名公告》正式發布。證嚴小行星,編號五五 五八〇二,二〇〇七年六月六日由中央大學 鹿林天文台林啟生及美國馬里蘭大學的葉泉 志博士共同發現,大小約一公里,繞行太陽 一圈三點六三年(軌道週期),離太陽最近 時(近日點)為二點七七億公里,最遠時 (遠日點)為四點三一億公里。

相關連結

<u>https://tw.news.yahoo.com/%E4%B8</u>
%AD%E5%A4%A7%E8%B4%88%E...

小行星以證嚴上人命名 慈悲智慧遍虚 空

發布日期:2024-10-01 新聞來源:Yahoo!新聞

2010年,<u>中央大學</u>將發現<u>小行星</u>命名為 「慈濟」。為感念證嚴法師秉持慈悲喜捨、 創辦慈濟基金會之奉獻,以鹿林天文台發現 之編號555802小行星,命名為「Cheng yen」(證嚴上人),向「<u>國際天文學聯合</u> 會」

「我們先看中間這裡喔。」

2024 年 8 月,國際天文學聯合會認證通過 「證嚴小行星」,中央大學團隊來到靜思精 舍,為大家揭開,小行星的秘密。應林天文 台台長 林宏欽:「這顆小行星的編號是 555802,大小大概是1公里左右,它的位置 是在火星跟木星之間,它繞太陽一圈大概是 3.63 年。」

中央大學天文研究所所長 陳文屏:「它不 像彗星 彗星外面會有冰,它是離太陽比較 近,是岩石質的天體。」

「受之有愧,(當之無愧)。」

2010年,中央大學將編號 192208小行星命 名為「慈濟」,這顆小行星距離地球約3億 公里,繞太陽一圈要5.62年。14年後,團 隊再度獻上紀念銘版。中央大學校長 周景 揚:「它是在宇宙上永恆地繞行,所以我們 也希望,上人的慈悲與智慧,堅忍不拔的精 神,永遠普照大地。」

慈濟人文志業執行長 王端正:「只要有一個人不同意,那就不行(通過)。」

國際天文學聯合會,對小行星命名有嚴格的 標準,必須將政治與宗教排除在外。命名團 隊深入說明,讓15位委員一致通過。前中 央大學校長 蔣偉寧:「慈濟不只是從宗教 的角度,慈濟從慈善 從防災 從環保,各個 面向都有很多的貢獻,所以證嚴上人的小行 星的命名,後來也就順利獲得通過。」

接下這分殊榮,上人勉勵全球慈濟人加倍付 出,將大愛傳遍國際。證嚴上人開示:「慈 濟被鼓勵 被重視,真的是很感恩,所以說 應該慈濟人,還要更積極,不只是現代,也 期待是永恆永續。」

相關連結

<u>https://tw.news.yahoo.com/%E5%B0</u>
%8F%E8%A1%8C%E6%98%9F%E...

讓國際看見台灣 中央大學頒贈 555802「證嚴小行星」

發布日期:2024-10-01 新聞來源:中時新聞網

慈濟基金會創辦人證嚴法師推動慈善事業, 受到各界肯定。中央大學感念其奉獻,不畏 颱風來襲,9月30日校由長周景揚等一行 前往花蓮,頒贈編號555802證嚴 (Chengyen)小行星給證嚴法師,期許她的 精神能夠繼續影響世人。

證嚴法師出生於1937年,今年87歲,她創 辦慈濟基金會超過半個世紀,長期致力推動 慈善服務與急難救助,不分國家、種族、宗 教與政治信仰,迄今援助136個國家與地 區。證嚴法師於慈善、醫療、教育、人文、 國際賑災和環境保護工作的努力不遺餘力, 讓國際看見台灣,也促使許多人更加樂於行 善。

中央大學周景揚校長說,慈濟的精神根植於 「慈悲」和「智慧」,以關懷之心對待每一 個需要幫助的人。證嚴法師以身作則,將這 一精神實踐於社會各個層面,無論是對於災 後重建、醫療援助、環境保護,還是貧困弱 勢群體的關懷,慈濟的足跡無處不在,此次 小行星的命名,期許這份理念能高掛天空, 世世代代傳承。

證嚴法師謙稱地說,何德何能可以接受這樣 的榮耀。她得到這麼大的勉勵禮物,都是全 球慈濟人的投入。慈濟剛創辦時是從日存五 毛錢開始,從花蓮訪貧關懷開始,50多年 後,如今每天面對著國際間的事情,透過科 技,與全球慈濟人對話,了解慈濟人的慈善 足跡。 證嚴法師以自己曾與太空人的對話,以及全 球慈濟人關懷擁抱受災者的故事,闡述佛法 的真空妙有。證嚴法師說,很感恩大家共同 感受到這份鼓勵,慈濟要更積極、邁向永 續。

證嚴小行星命名提出後,經國際天文學聯合 會(IAU)的小天體命名工作組審查通過,今 年8月15日出版的第4卷第11期《小天體 命名公告正式發佈。

證嚴小行星,編號 555802,2007年6月6 日由中央大學鹿林天文台林啟生及美國馬里 蘭大學的葉泉志博士共同發現,大小約1公 里,繞行太陽一圈3.63年(軌道週期), 離太陽最近時(近日點)為2.77億公里, 最遠時(遠日點)為4.31億公里。

相關連結

• <u>https://www.chinatimes.com/realt</u> imenews/20240930003365-...

中央大學命名「證嚴上人小行星」 獲國 際認證

發布日期:2024-10-01 新聞來源:慈善新聞網

國立中央大學為感念慈濟證嚴法師秉持慈悲 喜捨、感恩、尊重、愛,倡導眾生平等,創 辦慈濟基金會之奉獻,以該校鹿林天文台發 現之編號555802小行星,命名為「Cheng yen」(證嚴上人),向「國際天文學聯合 會」(International Astronomical Union, IAU)申請,於2024年8月獲 IAU 國際認證 通過。

中央大學繼 2010 年 10 月 1 日將發 現編號 192208 小行星命名為「慈濟(Tzu Chi)」小行星,由當時的校長蔣偉寧獻給 慈濟創辦人證嚴法師,14 年後再次前往靜 思精舍,9月30日中央大學前校長蔣偉寧 與現任校長周景揚等人特別前往花蓮靜思精 舍,將「Cheng yen」(證嚴上人)小行星 命名獲國際通過資料與銘板,獻給慈濟證嚴 法師。

中央大學周景揚校長表示,慈濟的精神根植 於「慈悲」和「智慧」,以關懷之心對待每 一個需要幫助的人。證嚴法師以身作則,將 這一精神實踐於社會各個層面,無論是對於 災後重建、醫療援助、環境保護,還是貧困 弱勢群體的關懷,慈濟的足跡無處不在,此 次小行星的命名,期許這份理念能高掛天 空,世世代代傳承。

國立中央大學指出,慈濟創立逾半 個世紀,長期致力推動慈善服務與急難救 助,不分國家、種族、宗教與政治信仰,迄 今援助136個國家與地區。其創辦人證嚴法 師於慈善、醫療、教育、人文、國際賑災和 環境保護工作的努力不遺餘力,讓國際看見 台灣,也促使許多人更加樂於行善。

中央大學鹿林天文台位在 2862 公尺 的高山,在 2002 年發現第一顆小行星後, 之後在 2006 年至 2009 年大爆發,發現了 800 多顆,它們主要位於木星和土星之間。

根據國際天文學聯合會的規定,其中得到確 認的,便可以由發現者予以命名。中央大學 表示, 鹿林天文台發現的 800 多顆小行星 中,其中有 100 多顆取得命名權,要為一顆 小行星完成命名,則要花好幾年的時間。

此次,中央大學向「國際天文學聯 合會」(International Astronomical Union, IAU)申請命名為「Cheng yen」 (證嚴上人)的小行星編號為555802。該 小行星是於2007年6月6日由中央大學鹿 林天文台林啟生及美國馬里蘭大學的葉泉志 博士共同發現,大小約1公里,繞行太陽一 圈 3.63年(軌道週期),離太陽最近時
(近日點)為 2.77億公里,最遠時(遠日點)為 4.31億公里。

申請內容說明為:「證嚴法師 1937 年生, 秉持慈悲喜捨、感恩尊重愛的理念,倡導眾 生平等,創辦慈濟基金會,一個台灣的國際 人道主義組織。致力於慈善、醫療、教育、 人文、國際賑災和環境保護工作,啟發了無 數人勇於行善助人,期許給人間一個友善的 社會、乾淨的地球」。

此一申請說明獲 IAU 小天體命名工 作組 (Working Group Small Bodies Nomenclature, WGSBN)審查通過,於 2024 年 8 月 15 日出版的第 4 卷第 11 期《小天體 命名公告》(WGSBN Bulletin Volume 4, #11)正式發佈。

中央大學指出,卓越的天文研究成果,充份 展現台灣人以小搏大、努力不懈的精神。期 許透過「Cheng yen」(證嚴上人)小行星 的命名與頒贈,感恩慈濟「大我無私、大愛 無痕」精神,淨化人心、祥和社會。

證嚴法師謙稱表示,何德何能可以 接受這樣的榮耀。今天得到這麼大的勉勵禮 物,都是全球慈濟人的投入。慈濟剛創辦時 是從日存五毛錢開始,從花蓮訪貧關懷開 始,五十多年後,如今每天面對著國際間的 事情,透過科技,與全球慈濟人對話,了解 慈濟人的慈善足跡。證嚴法師以自己曾與太 空人的對話,以及全球慈濟人關懷擁抱受災 者的故事,闡述佛法的真空妙有。證嚴法師 說:很感恩大家共同感受到這份鼓勵,慈濟 要更積極、邁向永續。

相關連結

 <u>https://www.tcnews.com.tw/news/i</u> tem/23803.html

中央大學感念證嚴法師大愛無痕 校長 周景揚親自頒贈 555802 小行星

發布日期:2024-10-01 新聞來源:今日新聞

記者林則澄/台北報導

1937 年出生的證嚴法師,秉持慈悲喜捨、 感恩及尊重愛的理念,倡導眾生平等,創辦 慈濟基金會。中央大學感念她的奉獻,校長 周景揚等一行人今(30)日前往花蓮縣,頒 贈編號 555802 證嚴(Chengyen)小行星給 她,期許她的精神能夠繼續影響世人。

慈濟創立超過半個世紀,長期致力推動慈善 服務與急難救助,不分國家、種族、宗教、 政治信仰,迄今援助136個國家與地區,創 辦人證嚴法師在慈善、醫療、教育、人文、 國際賑災與環境保護工作不遺餘力,也讓國 際看見台灣,促使許多民眾更加樂於行善。 周景揚表示,慈濟的精神根植在「慈悲」與 「智慧」,透過關懷之心對待每個需要幫助 的人,證嚴法師以身作則,實踐這個精神在 社會各個層面,無論是對災後重建、醫療援 助、環境保護,還是貧困弱勢群體的關懷善 舉,慈濟的足跡無處不在,這次小行星的命 名,則是期許這份理念高掛天空,傳承世世 代代。 證嚴法師表示,何德何能接受這樣 的榮耀,都是來自全球慈濟人的投入,才能 得到勉勵禮物,慈濟創辦之初是從日存五毛 錢、花蓮縣訪貧關懷開始,50多年後,如 今每天面對著國際間的事情,透過科技,對 話全球慈濟人了解慈善足跡。中央大學提 到,證嚴法師透過自己曾與太空人的對話, 以及全球慈濟人關懷擁抱受災者的故事,闡 述佛法的真空妙有。證嚴法師也說,感恩大 家共同感受這份鼓勵, 慈濟要更積極、邁向 永續。 中央大學指出,提出證嚴小行星命 名後已通過國際天文學聯合會 (International Astronomical Union,

IAU)的小天體命名工作組(Working Group Small Bodies Nomenclature, WGSBN)審 查,正式發布今年8月15日出版的第4卷 第11期《小天體命名公告》(WGSBN Bulletin Volume 4, #11),其中證嚴小行 星,編號555802,2007年6月6日是由中 央大學應林天文台林啟生、美國馬里蘭大學 的葉泉志博士共同發現,大小約為1公里, 繞行太陽1圈3.63年(軌道週期),距離 太陽最近(近日點)2.77億公里,最遠 (遠日點)則為4.31億公里。

中央大學分享,2006年開始的鹿林巡天計 畫,就曾發現台灣史上的第1顆彗星,同時 發現800多顆小行星,也讓台灣成為亞洲發 現小行星最為活躍的地方之一,而且卓越的 天文研究成果,充份展現台灣人以小搏大、 努力不懈的精神,期許透過證嚴小行星的命 名與頒贈,感恩慈濟「大我無私、大愛無 痕」精神,淨化人心、祥和社會。

相關連結

 <u>https://www.nownews.com/news/653</u> 9978

以證嚴命名小行星 中央大學今赴花蓮 頒贈

發布日期:2024-10-01 新聞來源:Yahoo!新聞

<u>中央大學</u>感念證嚴法師的奉獻,校長周景陽 等人今天(30日)前往花蓮,頒贈編號 555802證嚴(Chengyen)小行星給證嚴法 師,期許證嚴法師的精神能夠繼續影響世 人。

中央大學校長周景揚表示,證嚴法師以身作 則,將「慈悲」和「智慧」精神實踐於社會 各個層面,無論是對於災後重建、醫療援 助、環境保護,還是貧困弱勢群體的關懷, 慈濟的足跡無處不在,此次小行星的命名, 期許這份理念能高掛天空,世世代代傳承。

證嚴法師謙虛的表示,很感恩大家共同感受 到這份鼓勵,慈濟要更積極、邁向永續。

證嚴小行星,編號 555802,2007年6月6 日由中央大學鹿林天文台林啟生及美國馬里 蘭大學的葉泉志博士共同發現,大小約1公 里,繞行太陽一圈3.63年(軌道週期), 離太陽最近時(近日點)為2.77億公里, 最遠時(遠日點)為4.31億公里。

相關連結

<u>https://tw.news.yahoo.com/%E4%BB</u>
%A5%E8%AD%89%E5%9A%B4%E...

感念證嚴法師傳遞慈悲大愛 中央大學 頒贈小行星

發布日期:2024-10-01 新聞來源:Yahoo!新聞

中央社記者許秩維台北 30 日電

感念慈濟基金會創辦人證嚴法師倡導眾生平 等,以慈悲、感恩和尊重愛的理念創辦慈 濟,中央大學今天頒贈以證嚴命名的小行星 給證嚴法師,期許她的大愛精神能繼續影響 世人。

中央大學發布新聞稿指出,慈濟基金會創立 逾半個世紀,長期致力推動慈善服務與急難 救助,迄今援助136個國家與地區,慈濟創 辦人證嚴法師於慈善、醫療、教育、人文、 國際賑災、環保等工作不遺餘力,讓國際看 見台灣,也促使許多人樂於行善。 中央大學校長周景揚表示,慈濟的精神根植 於「慈悲」和「智慧」,以關懷之心對待每 個需要幫助的人,證嚴法師以身作則,將這 個精神實踐於社會各個層面,無論是對於災 後重建、醫療援助、環境保護,還是貧困弱 勢群體的關懷,慈濟的足跡無處不在,此次 小行星的命名,也期許證嚴法師的理念能高 掛天空,世世代代傳承。

訂閱《早安世界》電子報 每天3分鐘掌握 10件天下事

證嚴法師謙稱,何德何能接受這樣的榮耀, 今天得到這麼大的勉勵,都是全球慈濟人的 投入,慈濟創辦時是從日存5毛錢開始,從 花蓮訪貧關懷起步,如今每天面對國際間的 事情,透過科技與全球慈濟人對話,了解慈 濟人的慈善足跡,希望大家共同感受到這份 鼓勵,慈濟要更積極、邁向永續。

根據中央大學資料,證嚴(Chengyen)小行 星命名提出後,經國際天文學聯合會的小天 體命名工作組審查通過,於2024年8月15 日出版的第4卷第11期「小天體命名公 告」正式發布;證嚴小行星編號555802, 是2007年6月6日由中央大學鹿林天文台 林啟生及美國馬里蘭大學的葉泉志共同發 現,大小約1公里。

相關連結

• <u>https://www.cna.com.tw/news/ahel</u> /202409300239.aspx_

玉管處邀您參加~天地漫遊—塔塔加觀 星 天地之美盡在塔塔加

發布日期:2024-09-09 新聞來源:Yahoo!新聞

記者蔡榮宗/投縣報導

玉山國家公園管理處所轄塔塔加地區位於中 高海拔,跨越涼溫帶至寒帶。自楠梓仙溪溪 谷至玉山群峰,地貌複雜、林相豐富,造就 可觀的物種多樣性,是絕佳的環教學習場 域。又因遠離塵囂與光害、汙染,也是夢幻 追星地點。為鼓勵國人走入自然、領略國家 公園之美,玉管處特別規劃「天地漫遊—塔 塔加觀星活動」,邀請民眾上山,日間賞 景、夜裡觀星,體驗高海拔地區豐富的自然 生態資源,及天空透明度極佳的燦爛星辰。

玉管處表示,秋高氣爽正是登高好時節,將 在十月底及十一月初辦理二梯次「天地漫遊 一塔塔加觀星活動」,由專人帶領走入塔塔 加欣賞動植物生態,並漫遊璀璨迷人的秋夜 星空。活動邀請中央大學天文所「鹿林天文 臺」林宏欽臺長領導的觀測團隊指導觀星, 同時,十分難得的,還能參訪鹿林天文臺, 親見臺灣最大口徑1米光學望遠鏡。期待 萬物,共同朝向淨零排碳之生活目標。玉管 處竭誠歡迎熱愛大自然與天文之美的民眾共 襄盛舉。

玉管處說明,本活動自前(一一一)年?理 以來,連續二年每梯次都爆滿,因此向隅者 眾。今(一一三)年將於十月二十六~二十 七日及十一月二~三日辦理二梯次,每梯次 名額僅二十五名,共計五十名,竭誠歡迎國 小五年級以上之民眾參與,報名費每人二千 元整。採「線上報名」,請至玉山國家公園 線上報名系統

https://tinyurl.com/3tkb9cnz填寫詳細 報名資料。報名期限自一一三年九月八日二 十時起至九月二十二日十七時止,額滿則提 早截止,名額有限,敬請把握機會!

玉管處提醒,報名前請至玉山國家公園全球 資訊網 https://www.ysnp.gov.tw及玉山國 家公園臉書粉絲專頁 https://www.facebook.com/YuShanNationa 1Park/詳閱活動簡章。本活動為落實環保、 減輕大地負擔,活動全程以「淨零碳匯」為 目標,敬請參加者共同遵行。玉山國家公園 竭誠敬邀、期待您來共享天地漫遊,同時一 起愛地球。

相關連結

<u>https://tw.news.yahoo.com/%E7%8E</u>
%89%E7%AE%A1%E8%99%95%E...

日間賞景夜裡觀星 玉管處邀您塔塔加 觀星天地漫遊

發布日期:2024-09-09 新聞來源:ow1News

勁報記者何秀菁/南投報導

玉山國家公園塔塔加地區位於中高海拔,跨 越涼溫帶至寒帶。自楠梓仙溪溪谷至玉山群 峰,地貌複雜、林相豐富,造就可觀的物種 多樣性,是絕佳的環教學習場域。又因遠離 塵囂與光害、汙染,也是夢幻追星地點。玉 山國家公園管理處為鼓勵國人走入自然、領 遊 — 塔塔加觀星活動」,邀請民眾上山, 日間賞景、夜裡觀星,體驗高海拔地區豐富 的自然生態資源,及天空透明度極佳的燦爛 星辰。

玉管處表示,秋高氣爽正是登高好時節,將 在 10 月底及 11 月初辦理 2 梯次「天地 漫遊 — 塔塔加觀星活動」,由專人帶領走 入塔塔加欣賞動植物生態,並漫遊璀璨迷人 的秋夜星空。活動邀請中央大學天文所「鹿 林天文臺」林宏欽臺長領導的觀測團隊指導 觀星,同時,十分難得的,還能參訪鹿林天 文臺,親見臺灣最大口徑 1 米光學望遠 鏡。期待經由寓教於樂,學習尊重環境、珍 惜生態萬物,共同朝向淨零排碳之生活目 標。玉管處歡迎熱愛大自然與天文之美的民 眾共襄盛舉。

玉管處說明,活動自前(111)年辦理以 來,連續2年每梯次都爆滿,因此向隅者 眾。今(113)年將於10月26、27日及 11月2、3日辦理2梯次,每梯次名額僅 25名,共計50名,歡迎國小五年級以上 之民眾參與,報名費每人2,000元整。採 「線上報名」,請至玉山國家公園線上報名 系統 https://tinyurl.com/3tkb9cnz填寫 詳細報名資料。報名期限自113年9月8 日20:00起至9月22日17:00止,額 滿則提早截止。

玉管處提醒,報名前請至玉山國家公園全球 資訊網 https://www.ysnp.gov.tw 及玉山 國家公園臉書粉絲專頁 https://www.facebook.com/YuShanNationa lPark/詳閱活動簡章。為落實環保、減輕 大地負擔,活動全程以「淨零碳匯」為目 標,請參加者共同遵行。玉山國家公園歡迎 您來共享天地漫遊,同時一起愛地球。

相關連結

玉管處推「天地漫遊—塔塔加觀星」活 動 今晚8時開放線上報名

發布日期:2024-09-09 新聞來源:ETtoday 運動雲

記者高堂堯/南投報導

玉山國家公園塔塔加地區因遠離塵囂與光 害、汙染,向來是「追星」熱點,國家公園 管理處特別規劃2梯次觀星活動,邀請民眾 上山,日間賞景、夜裡觀星,體驗高海拔地 區豐富的自然生態資源,及天空透明度極佳 的燦爛星辰。

玉管處表示,「天地漫遊—塔塔加觀星活動」除由專人帶領、欣賞塔塔加動植物生態,更邀請中央大學天文所「鹿林天文臺」 台長林宏欽領導的觀測團隊指導觀星,還參訪難得一見、臺灣最大口徑(1米)的光學 望遠鏡。

玉管處說明,本次活動將於10月26至27 日及11月2至3日辦理2梯次,每梯次名 額僅25名,歡迎國小五年級以上之民眾參 與,報名費每人2000元整,報名期限自今 日晚間8時起至9月22日下午5時止,額 滿則提早截止,因本活動自前(111)年辦 理以來每梯次都爆滿,敬請把握機會。

玉管處提醒,活動採「線上報名」,請至玉 山國家公園線上報名系統

(https://tinyurl.com/3tkb9cnz)填寫詳
細報名資料,報名前也請至玉山國家公園全
球資訊網(https://www.ysnp.gov.tw)及
玉山國家公園臉書粉絲專頁

(https://www.facebook.com/YuShanNatio nalPark/) 詳閱活動簡章。

相關連結

 <u>https://www.ettoday.net/news/202</u> 40908/2813014.htm

玉山塔塔加觀星2場限額50人 9/8 搶報名

發布日期:2024-09-09 新聞來源:中央通訊社

中央社記者蕭博陽南投縣6日電

熱門的玉山塔塔加觀星活動將於10月26日 至27日、11月2日至3日辦理,有專人導 覽塔塔加動植物生態,更難得能參訪鹿林天 文台,活動2梯次限額共50人,9月8日 至22日線上報名。

塔塔加觀星活動自民國111年辦理,連續2 年每梯次迅速額滿,內政部國家公園署玉山 國家公園管理處今天表示,將於10月26日 至27日、11月2日至3日辦理今年活動, 每梯次限額25人,共50人,歡迎國小五年 級以上民眾參加,報名費每人新台幣2000 元,請至玉山國家公園線上報名系統填寫資 料,8日晚間8時起開放報名。

玉山國家公園管理處透過新聞稿表示,塔塔 加地區位於中高海拔,跨越涼溫帶至寒帶, 自楠梓仙溪谷至玉山群峰地貌複雜、林相豐 富,形成物種多樣性,是絕佳環教學習場 域,且遠離塵囂與光害,更是夢幻追星地 點,因此規劃活動邀民眾上山,日間賞景、 夜裡觀星。

玉管處表示,專人帶領走入塔塔加欣賞動植 物生態,並漫遊璀璨迷人的秋夜星空,也邀 國立中央大學天文研究所鹿林天文台觀測團 隊指導遊客觀星,且機會難得可參訪鹿林天 文台;但提醒塔塔加位於山區,交通、飲 食、住宿不便,無法與「平地」相提並論。

相關連結

• <u>https://www.cna.com.tw/news/ahel</u> /202409060244.aspx_

「天地漫遊―塔塔加觀星活動」 邀民 眾日間賞景、夜裡觀星

發布日期:2024-09-09 新聞來源:台灣好新聞

記者吳素珍/南投報導

內政部國家公園署玉山國家公園管理處所轄 塔塔加地區位於中高海拔,跨越涼溫帶至寒 帶。自楠梓仙溪溪谷至玉山群峰,地貌複 雜、林相豐富,造就可觀的物種多樣性,是 絕佳的環教學習場域。又因遠離塵囂與光 害、汙染,也是夢幻追星地點。為鼓勵國人 走入自然、領略國家公園之美,玉管處特別 規劃「天地漫遊—塔塔加觀星活動」,邀請 民眾上山,日間賞景、夜裡觀星,體驗高海 拔地區豐富的自然生態資源,及天空透明度 極佳的燦爛星辰。

玉管處表示,秋高氣爽正是登高好時節,將 在10月底及11月初辦理2梯次「天地漫遊 一塔塔加觀星活動」,由專人帶領走入塔塔 加欣賞動植物生態,並漫遊璀璨迷人的秋夜 星空。活動邀請中央大學天文所「鹿林天文 臺」林宏欽臺長領導的觀測團隊指導觀星, 同時,十分難得的,還能參訪鹿林天文臺, 親見臺灣最大口徑1米光學望遠鏡。期待國 人經由寓教於樂,學習尊重環境、珍惜生態 萬物,共同朝向淨零排碳之生活目標。玉管 處竭誠歡迎熱愛大自然與天文之美的民眾共 襄盛舉。

玉管處說明,本活動自前(111)年辦理以 來,連續2年每梯次都爆滿,因此向隅者 眾。今(113)年將於10月26~27日及11 月2~3日辦理2梯次,每梯次名額僅25 名,共計50名,竭誠歡迎國小五年級以上 之民眾參與,報名費每人2,000元整。採 「線上報名」,請至玉山國家公園線上報名 系統<u>https://tinyurl.com/3tkb9cnz</u>填寫 詳細報名資料。報名期限自113年9月8日 20:00起至9月22日17:00止,額滿則提 早截止,名額有限,敬請把握機會!

玉管處提醒,報名前請至玉山國家公園全球 資訊網<u>https://www.ysnp.gov.tw/</u>及玉山 國家公園臉書粉絲專頁 https://www.facebook.com/YuShanNationa <u>1Park/</u>詳閱活動簡章。本活動為落實環保、 減輕大地負擔,活動全程以「淨零碳匯」為 目標,敬請參加者共同遵行。玉山國家公園 竭誠敬邀、期待您來共享天地漫遊,同時一 起愛地球。

相關連結

• <u>https://www.taiwanhot.net/news/1</u> 079612/%E3%80%8C%E5%A4%...

小行星墜落台灣視角曝光!菲律賓「目 睹火球畫面超震撼」

發布日期:2024-09-09 新聞來源:line today

一顆編號為 CAQDTL2 的小行星,在台灣時間 今日凌晨,墜落在菲律賓呂宋島東北部,小 行星進入大氣層時,預計會產生的亮度會超 過-8 等,台灣南邊也可看到火流星。國立 中央大學天文研究所「鹿林天文台」拍下發 光瞬間引起熱議,而網路上瘋傳菲律賓民眾 拍攝的視角畫面更震撼!

CAQDTL2 是一顆來自主小行星帶,也就是火 星和木星軌道之間的小行星密集區域的小行 星,這是人類歷史上第9次在進入地球大氣 層之前,就先發現的外星物體。

CAQDTL2小行星墜落後,國立中央大學天文 研究所「鹿林天文台」隨即在臉書貼出一段 6秒影片,表示雖然天氣的狀況非常差,今 凌晨0點39分還是等到了流星發出來的亮 光。畫面中原本漆黑一片的空地,慢慢發出 一陣亮光,不過才3秒就消失了。

許多天文迷也分享自己在陽明山等地拍攝的 畫面,網友們紛紛表示,「台北陽明山, 800公里實在是太遠了,扣掉地球曲率仰角 大概只有3度,中間還有花東的積雨雲干 擾」、「恆春南灣電閃雷鳴,我猜它混在這 一片一片雷光中」、「我們先看到的是像閃 電那種曝光!再後來看到那個亮點!」

此外,有不少菲律賓民眾也紛紛拍下小行星 墜落的一刻,當地視角相當清晰,只見一顆 火球,朝著地面飛來,隨即消失在地平線 下,畫面非常震撼,也在網路上瘋傳。

相關連結

 <u>https://today.line.me/tw/v2/arti</u> cle/gzP38RX

小行星墜落台灣視角曝光!菲律賓「目 睹火球畫面超震撼」

發布日期:2024-09-06 新聞來源:CTWANT

编辑:薛羽彤

一顆編號為 CAQDTL2 的小行星,在台灣時間 今日凌晨,墜落在菲律賓呂宋島東北部,小 行星進入大氣層時,預計會產生的亮度會超 過-8 等,台灣南邊也可看到火流星。國立 中央大學天文研究所「鹿林天文台」拍下發 光瞬間引起熱議,而網路上瘋傳菲律賓民眾 拍攝的視角畫面更震撼!

CAQDTL2 是一顆來自主小行星帶,也就是火 星和木星軌道之間的小行星密集區域的小行 星,這是人類歷史上第9次在進入地球大氣 層之前,就先發現的外星物體。

CAQDTL2小行星墜落後,國立中央大學天文 研究所「鹿林天文台」隨即在臉書貼出一段 6秒影片,表示雖然天氣的狀況非常差,今 凌晨0點39分還是等到了流星發出來的亮 光。畫面中原本漆黑一片的空地,慢慢發出 一陣亮光,不過才3秒就消失了。 許多天文迷也分享自己在陽明山等地拍攝的 畫面,網友們紛紛表示,「台北陽明山, 800公里實在是太遠了,扣掉地球曲率仰角 大概只有3度,中間還有花東的積雨雲干 擾」、「恆春南灣電閃雷鳴,我猜它混在這 一片一片雷光中」、「我們先看到的是像閃 電那種曝光!再後來看到那個亮點!」

此外,有不少菲律賓民眾也紛紛拍下小行星 墜落的一刻,當地視角相當清晰,只見一顆 火球,朝著地面飛來,隨即消失在地平線 下,畫面非常震撼,也在網路上瘋傳。

相關連結

 <u>https://www.ctwant.com/article/3</u> 60874?utm_source=yahoo&...

小行星墜入菲律賓!鹿林天文台拍下 「發光瞬間」 國外視角更驚人

發布日期:2024-09-06 新聞來源:ETtoday 新聞雲

記者趙蔡州/綜合報導

一顆編號為 CAQDTL2、直徑 1 公尺的小行星 在 5 日凌晨 0 點 39 分墜落在菲律賓呂宋島 東北部,由於小行星進入地球大氣層時會產 生明顯的火球亮光,許多天文愛好者紛紛拿 出攝影機拍下這個精采時刻,國立中央大學 天文研究所鹿林天文台也拍下小行星墜落地 球發光的瞬間,並將影片分享在臉書,引發 討論。

CAQDTL2小行星墜落後,國立中央大學天文 研究所應林天文台隨即在臉書貼出影片,表 示儘管天氣的狀況非常差,還是在5日凌晨 0點39分拍到了小行星發出的亮光。影片 可以看見,原本現場一片漆黑什麼都看不 到,下一秒遠方突然出現巨大亮光,亮光大 約持續3秒就消失在鏡頭前。 影片一出立刻引發網友熱議,有人說「我以 為我看錯,原來我有看到」、「我也是,當 下我還以為是雷雲之類的」、「平地什麼都 沒有」、「太亮了吧」。也有網友分享外國 網友在菲律賓拍攝到的高清影片,可以看見 一顆巨大的火球突然劃破黑夜,在天空中飛 行數秒後隱沒在遠處的地平線下,畫面非常 壯觀。

國際流星組織4日表示,CAQDTL2是一顆來 自主小行星帶(火星和木星軌道之間的小行 星密集區域)的小行星,直徑大約為1公 尺,這次是人類歷史上第9次在進入地球大 氣層之前就先發現的外星物體。

國際流星組織說,根據小行星的大小推估, CAQDTL2預計不會造成影響,在墜落地區附 近的居民有很大的機率目擊到一顆非常明亮 且緩慢的火流星,並且隕石(若未燃盡)有 可能墜落到呂宋島上或附近的海洋。

相關連結

<u>https://www.ettoday.net/news/202</u> 40905/2810971.htm

震撼!小行星墜菲律賓「火球點亮夜 空」 台灣視角6秒畫面曝光

發布日期:2024-09-06 新聞來源:eNEWS

陳彩梅

一顆直徑約1公尺、編號為 CAQDTL2 的小行 星於今(5)日凌晨0時39分墜落在菲律賓 呂宋島東北部,引發關注。對此,國立中央 大學天文研究所「鹿林天文台」也成功拍下 小行星進入地球大氣層時產生明顯的火球亮 光的瞬間,並將這段珍貴的畫面分享至臉書 粉專,吸引了超過9.5萬次的瀏覽量,而網 路上瘋傳菲律賓民眾拍攝的視角,畫面更加 震撼。

國立中央大學天文研究所鹿林天文台在臉書 貼出一段長 6 秒的影片表示,儘管天氣非常 差,但還是在 5 日凌晨 0 點 39 分拍到了小 行星發出的亮光,可以看見原本一片漆黑的 天空突然出現一道巨大亮光,大約持續 3 秒 後就完全消失了。

影片一出,不少網友紛紛激動直呼:「小編 太偉大了啦,還額外抽時間出來拍給大家, 太辛苦了,謝謝您」、「太亮了吧」、「我 以為我看錯,原來我有看到」、「我也是, 當下我還以為是雷雲之類的」、「我們先看 到的是像閃電那種曝光,再後來看到那個是 像閃電那種曝光,再後來看到那個是 了一片雷光中」;另有網友分享菲律賓當 一片一片雷光中」;另有網友分享菲律賓當 大的火球突然劃破天際,照亮夜晚的天空, 並在天空中飛行數秒後隱沒在遠處的地平線 下,畫面非常壯觀。

事實上,CAQDTL2 是一顆來自主小行星帶, 也就是火星和木星軌道之間的小行星密集區 域的小行星,而CAQDTL2 小行星即將墜毀事 件最初是由卡塔琳娜巡天系統(Catalina Sky Survey)預先發現的,這是人類歷史上 第9次在外星物體進入地球大氣層前的預知 事件,相當具有天文進展的意義。

相關連結

<u>https://tw.news.yahoo.com/%E9%9C</u>
%87%E6%92%BC-%E5%B0%8F%...

小行星墜菲律賓畫面曝! 鹿林天文台拍下「發光瞬間」 超驚人

發布日期:2024-09-06 新聞來源:TVBS 新聞網

記者 沈冠勳 報導

今(5)日凌晨0點39分,一顆編號為 CAQDTL2、直徑1公尺的小行星墜落在菲律 賓呂宋島東北部,國立中央大學天文研究所 「鹿林天文台」也拍攝到小行星墜落地球發 光的瞬間,並上傳到臉書,引發網友熱議; 另外,YouTube頻道「阿里山國家風景區管 理處」也有拍到流星的亮光點亮整片天空的 畫面,畫面相當驚人。

國立中央大學天文研究所「鹿林天文台」在 臉書上分享影片,寫下「雖然天氣非常差, 但還是等到了流星發出來的亮光。」在粉絲 專頁發布的影片中,原本一片漆黑的天空, 突然被小行星發出的亮光點亮,亮光大約持 續3秒就消失在鏡頭前,畫面非常震撼。

影片上傳立刻引起網友熱議,不只觀看達 11萬次點閱,還紛紛留言討論「我以為我 看錯!原來我有看到」、「閃電是一瞬間 流星持續時間比較久 尤其今天颱風外圍環 流對流旺盛 閃電很多」、「我們先看到的 是 像閃電那種 曝光!再後來看到那個亮 點!」、「我以為世運在測試演唱會的燈 光」,不過也有一些網友說「平地什麼都沒 有」、「河濱公園沒有」。另外,也還有網 友貼心的分享「阿里山國家風景區管理 處」、菲律賓當地人拍攝到的驚人畫面。

據了解,這顆編號為CAQDTL2、直徑1公尺 的小行星,最初是由卡塔琳娜巡天系統 (Catalina Sky Survey)發現,預測會進 入菲律賓北部、呂宋島附近;國際流星組織 4日也通報此事,指出小行星不會撞擊,但 該區域的民眾有機會在天空中,看到一顆明 亮的火球;這也是人類歷史上第9次在外星 物體進入地球大氣層前先預知事件,相當具 有天文進展之意義。

相關連結

 <u>https://news.tvbs.com.tw/amp/loc</u> <u>a1/2608695</u>

2024 桃園天文嘉年華 中央大學帶你 探索天文

發布日期:2024-07-16 新聞來源:大紀元

大紀元記者徐乃義/台灣桃園報導

國立中央大學即日起舉辦為期七天的「2024 桃園天文嘉年華」,旨在推廣天文與太空科 學,讓更多人親近星空、探索宇宙奧秘,並 激發對科學的興趣,今年特別與「台灣太空 科學聯盟」攜手合作,希望透過天文與太空 科學的推廣,鼓勵更多民眾積極參與科學教 育,共同推動桃園市成為天文與太空城市, 成為台灣天文與太空教育的領航者,讓全民 共同探索浩瀚宇宙的無限可能。

台灣科學特殊人才提升計畫主持人、中央大 學天文所葉永烜院士表示,「桃園天文嘉年 華」是結合天文學與太空科學的年度盛事, 特別感謝參與民眾的支持,希望能藉此帶動 桃園科學教育發展,活動不僅展示天文及太 空的無窮魅力,還能激發科學愛好者的濃厚 興趣。

中央大學許秉瑜副校長認為,孩子們藉由活 動親近天文與科學,未來能有機會投身於基 礎研究。今年活動內容豐富多彩,包括科普 演講、動手作工作坊、火星探索 VR、天文 故事館、摺紙天文學、航海太陽系的互動遊 戲、多元展示等。中大致力於培養全方位創 新型人才,科學為其中重要的一環,期望投 身於活動中所有人的努力,都能夠開花結 果。

國科會自然處羅夢凡處長指出,科普與人才 培育為國科會重要工作,科學與技術需要不 斷傳承,天文與太空都為當前台灣發展的重 點領域,更重要的是,科普與人才培育都必 須與在地連結,給予活動許多肯定。

國家太空中心吳宗信主任分享自身經歷,認 為宇宙的神祕令人著迷,透過技術的不斷進 步,常常化不可能為可能。回想自己念書 時,用著又大又慢的電腦,無法想像將來會 有智慧型手機的誕生,他以" Nothing is impossible."鼓勵現場孩子,只要勇於嘗 試,沒有什麼是不可能的。

活動由小小太空人們揭開序幕,帶領大家探 索太空的無限可能,為未來奠定基礎。今年 特別推出「旅行到火星」主題展覽,帶領參 觀者全面探索這顆引人注目的紅色星球—火 星。推廣天文與太空科學教育,激發全民對 科學的熱情,不論是未來的科學家們,或是 對天文與太空有興趣的民眾,此次的經歷或 許會成為他們追尋科學夢想的起點。

「台灣科學特殊人才提升計畫」透過各類活 動及不同方向,致力於科學推廣、教育深耕 及人才培育,充分利用中央大學在天文教學 及研究上的優勢,以中大天文台作為教學基 地,激發學子對天文學的熱情。中央大學希 望通過參與和支持這樣的活動,能夠讓更多 的年輕人愛上科學,投身於科研工作,為台 灣的科技發展貢獻自己的力量。

相關連結

<u>https://cn.epochtimes.com/b5/24/</u> 7/14/n14290321.htm

桃園天文嘉年華 七天活動帶你探索天 文

發布日期:2024-07-15 新聞來源:台灣好新聞

記者葉志成/桃園報導

國立中央大學將於113年7月13日至7月 19日舉辦為期七天的「2024桃園天文嘉年 華」,旨在推廣天文與太空科學,讓更多人 親近星空、探索宇宙奧秘,並激發對科學的 興趣,今年特別與「臺灣太空科學聯盟」攜 手合作,希望透過天文與太空科學的推廣, 鼓勵更多民眾積極參與科學教育,共同推動 桃園市成為天文與太空城市,成為臺灣天文 與太空教育的領航者,讓全民共同探索浩瀚 宇宙的無限可能。

臺灣科學特殊人才提升計畫主持人、中央大 學天文所葉永烜院士表示,「桃園天文嘉年 華」是結合天文學與太空科學的年度盛事, 特別感謝參與民眾的支持,希望能藉此帶動 桃園科學教育發展,活動不僅展示天文及太 空的無窮魅力,還能激發科學愛好者的濃厚 興趣。

中央大學許秉瑜副校長認為,孩子們藉由本 活動親近天文與科學,未來能有機會投身於 基礎研究。今年活動內容豐富多彩,包括科 普演講、動手作工作坊、火星探索 VR、天 文故事館、摺紙天文學、航海太陽系的互動 遊戲、多元展示等。中大致力於培養全方位 創新型人才,科學為其中重要的一環,期望 投身於活動中所有人的努力,都能夠開花結 果。

國科會自然處羅夢凡處長指出,科普與人才 培育為國科會重要工作,科學與技術需要不 斷傳承,天文與太空都為當前臺灣發展的重 點領域,更重要的是,科普與人才培育都必 須與在地連結,給予活動許多肯定。

國家太空中心吳宗信主任分享自身經歷,認 為宇宙的神祕令人著迷,透過技術的不斷進 步,常常化不可能為可能。回想自己念書 時,用著又大又慢的電腦,無法想像將來會 有智慧型手機的誕生,他以" Nothing is impossible." 鼓勵現場孩子,只要勇於嘗 試,沒有什麼是不可能的。

活動由小小太空人們揭開序幕,帶領大家探 索太空的無限可能,為未來奠定基礎。今年 特別推出「旅行到火星」主題展覽,帶領參 觀者全面探索這顆引人注目的紅色星球—火 星。推廣天文與太空科學教育,激發全民對 科學的熱情,不論是未來的科學家們,或是 對天文與太空有興趣的民眾,此次的經歷或 許會成為他們追尋科學夢想的起點。

「臺灣科學特殊人才提升計畫」透過各類活 動及不同方向,致力於科學推廣、教育深耕 及人才培育,充分利用中央大學在天文教學 及研究上的優勢,以中大天文台作為教學基 地,激發學子對天文學的熱情。中央大學希 望通過參與和支持這樣的活動,能夠讓更多 的年輕人愛上科學,投身於科研工作,為臺 灣的科技發展貢獻自己的力量。

相關連結

• <u>https://www.taiwanhot.net/news/1</u> 074270/%E6%A1%83%E5%9C%...

2024 桃園天文嘉年華中央大學登場 帶你探索天文

發布日期:2024-07-15 新聞來源:ETtoday 運動雲

記者楊淑媛/桃園報導

中央大學為推廣天文與太空科學,讓更多人 親近星空、探索宇宙奧秘,與「臺灣太空科 學聯盟」合作,13日至19日舉辦為期7天 的「2024桃園天文嘉年華」活動於該校展 開,期鼓勵更多民眾參與科學教育,共同推 動桃園成為天文與太空城市,成為臺灣天文 與太空教育的領航者,讓全民共同探索浩瀚 宇宙的無限可能。

中央大學許秉瑜副校長認為,孩子們藉由本 活動親近天文與科學,未來能有機會投身於 基礎研究。今年活動內容豐富多彩,包括科 普演講、動手作工作坊、火星探索 VR、天 文故事館、摺紙天文學、航海太陽系的互動 遊戲、多元展示等。中大致力於培養全方位 創新型人才,科學為其中重要的一環,期望 投身於活動中所有人的努力,都能夠開花結 果。

國科會自然處羅夢凡處長指出,科普與人才 培育為國科會重要工作,科學與技術需要不 斷傳承,天文與太空都為當前臺灣發展的重 點領域,更重要的是,科普與人才培育都必 須與在地連結,給予活動許多肯定。

國家太空中心吳宗信主任分享自身經歷,認 為宇宙的神祕令人著迷,透過技術的不斷進 步,常常化不可能為可能。回想自己念書 時,用著又大又慢的電腦,無法想像將來會 有智慧型手機的誕生,他以" Nothing is impossible." 鼓勵現場孩子,只要勇於嘗 試,沒有什麼是不可能的。

活動由小小太空人們揭開序幕,帶領大家探 索太空的無限可能,為未來奠定基礎。今年 特別推出「旅行到火星」主題展覽,帶領參 觀者全面探索這顆引人注目的紅色星球—火 星。推廣天文與太空科學教育,激發全民對 科學的熱情,不論是未來的科學家們,或是 對天文與太空有興趣的民眾,此次的經歷或 許會成為他們追尋科學夢想的起點。 「臺灣科學特殊人才提升計畫」透過各類活動及不同方向,致力於科學推廣、教育深耕 及人才培育,充分利用中央大學在天文教學 及研究上的優勢,以中大天文台作為教學基 地,激發學子對天文學的熱情。中央大學希 望通過參與和支持這樣的活動,能夠讓更多 的年輕人愛上科學,投身於科研工作,為臺 灣的科技發展貢獻自己的力量。

相關連結

 <u>https://www.ettoday.net/news/202</u> 40713/2776755.htm

桃園天文嘉年華 七天活動帶你探索天 文

發布日期:2024-07-15 新聞來源:經濟日報

經濟日報 曹松清

國立中央大學於7月13至19日舉辦為期七 天的「2024桃園天文嘉年華」,旨在推廣 天文與太空科學,讓更多人親近星空、探索 宇宙奧秘,並激發對科學的興趣。

今年特別與「臺灣太空科學聯盟」攜手合作,希望透過天文與太空科學的推廣,鼓勵 更多民眾積極參與科學教育,共同推動桃園 市成為天文與太空城市,成為臺灣天文與太 空教育的領航者,讓全民共同探索浩瀚宇宙 的無限可能。

臺灣科學特殊人才提升計畫主持人、中央大 學天文所葉永烜表示,「桃園天文嘉年華」 是結合天文學與太空科學的年度盛事,特別 感謝參與民眾的支持,希望能藉此帶動桃園 科學教育發展,活動不僅展示天文及太空的 無窮魅力,還能激發科學愛好者的濃厚興 趣。 中央大學副校長許秉瑜認為,孩子們藉由該 活動親近天文與科學,未來能有機會投身於 基礎研究。今年活動內容豐富多彩,包括科 普演講、動手作工作坊、火星探索 VR、天 文故事館、摺紙天文學、航海太陽系的互動 遊戲、多元展示等。中大致力於培養全方位 創新型人才,科學為其中重要的一環,期望 投身於活動中所有人的努力,都能夠開花結 果。

國科會自然處處長羅夢凡指出,科普與人才 培育為國科會重要工作,科學與技術需要不 斷傳承,天文與太空都為當前臺灣發展的重 點領域,更重要的是,科普與人才培育都必 須與在地連結,給予活動許多肯定。

國家太空中心主任吳宗信分享自身經歷,認 為宇宙的神祕令人著迷,透過技術的不斷進 步,常常化不可能為可能。回想自己念書 時,用著又大又慢的電腦,無法想像將來會 有智慧型手機的誕生,他以「Nothing is impossible.」鼓勵現場孩子,只要勇於嘗 試,沒有什麼是不可能的。

活動由小小太空人們揭開序幕,帶領大家探 索太空的無限可能,為未來奠定基礎。今年 特別推出「旅行到火星」主題展覽,帶領參 觀者全面探索這顆引人注目的紅色星球—火 星。推廣天文與太空科學教育,激發全民對 科學的熱情,不論是未來的科學家們,或是 對天文與太空有興趣的民眾,此次的經歷或 許會成為他們追尋科學夢想的起點。

「臺灣科學特殊人才提升計畫」透過各類活動及不同方向,致力於科學推廣、教育深耕 及人才培育,充分利用中央大學在天文教學 及研究上的優勢,以中大天文台作為教學基 地,激發學子對天文學的熱情。中央大學希 望通過參與和支持這樣的活動,能夠讓更多 的年輕人愛上科學,投身於科研工作,為臺 灣的科技發展貢獻自己的力量。

相關連結

 <u>https://money.udn.com/money/stor</u> y/5635/8094843

永續的征程 紀錄百位科學家下鄉教科 普

發布日期:2024-07-15 新聞來源:自由時報

記者吳柏軒/台北報導

國科會號召百名科學家奔赴全台各鄉鎮, 幫 國小到高中的學子進行科學教育, 並由導演 魏郁蓁、製片徐國揚花兩年時間, 拍攝製作 紀錄片《永續的征程》, 片中台灣大學徐丞 志傳授質譜儀檢測乳癌、成功大學林弘萍則 深耕菱角殼炭化再利用、中央大學陳文屏熱 愛用望遠鏡探究天文奧秘。

導演魏郁蓁、製片徐國揚 花2年完成 徐國 揚表示,與妻子魏郁蓁投入紀錄片拍攝,多 為台灣土地故事,這次參與國科會紀錄片 《永續的征程》,回憶曾在山中遇到大學教 授帶研究生到偏鄉溪流,找當地原住民學生 採樣魚蝦,同時傳授生物及研究等知識,不 僅從事學術,更富有在地關懷;該紀錄片花 兩年跟拍十多名教授並後製,呈現國科會推 動百名科學家到各鄉鎮科普教育的片段。

台大化學系副教授徐丞志表示,質譜儀突破 傳統基因檢測極限,可分辨健康細胞跟癌細 胞的化學成分不同,再透過人工智慧模型與 電腦判讀,即時檢測;他參與國科會活動是 想將先進技術科普給一般大眾,到嘉義女中 向學生秀出相關應用,包含乳癌檢測,獲學 生熱烈回響、增進學習動機。

成大化學系教授林弘萍則深根菱角殼再利用 技術,他說,菱角殼看似簡單,但須一、二 年才能腐化,且不能丟垃圾車,過往農民用 燒的會製造空污,自己透過化學角度,協助 在地將其炭化並再利用,親授設備維護方 法,更打造循環經濟價值,可用在儲電設 備,或與蚵殼水泥一起修復古蹟等,形成整 套科普課程四處講授。

「科普可讓人們知道,日常生活中,科學幫 我們很多忙!」中央大學天文所教授陳文屏 為天文愛好者,他坦言愛多管閒事,過去便 在鬧區架望遠鏡向路人分享星象,紀錄片中 也親自到偏鄉小學,在下午時刻讓孩子窺探 月亮與表面坑洞,講述月相知識等,讓孩子 從一開始吵鬧,到最後不為考試只為新知的 專心聽講,自己也從中得到感動。

相關連結

<u>https://news.ltn.com.tw/news/lif</u>
e/paper/1656498_

國際小行星日前夕 今晚具潛在威脅小 行星將近掠地球

發布日期:2024-07-01 新聞來源:聯合新聞網

記者林佳珳/台北即時報導

明天是「國際小行星日」,台北市立天文館 預告今晚約10點,將有1顆具潛在威脅的 2024 MK小行星近距離飛掠地球,比月球還 近三分之一,也是近年近地星體中最亮一 顆,天文館會在 YouTube 頻道直播實況,並 解答小行星的大秘密。

天文館表示,國際小行星日是聯合國於 2016年設立的國際性教育活動,紀念近代 最具代表性的小行星撞擊事件、1908年6 月30日在俄國的通古斯大爆炸,目的是呼 籲公眾關注小行星撞擊風險,未兩綢繆為下 一次撞擊事件做好準備。 天文館說,目前已經被確認的小行星多達數 10 萬顆,並非都具有危險性,天文學家將 與地球軌道距離小於 0.05 天文單位、約 750 萬公里且絕對星等高於 22.0 等以上 者,歸類為「具潛在威脅小行星」,現已發 現 2000 多顆。

天文館透露5年後,2029年4月13日驚險 掠過地球的99942號小行星「阿波菲斯」就 是具潛在威脅小行星其中之一,威力足以摧 毀整個台灣,民眾屆時將可目擊閃耀著接近 北極星亮度的光芒,從比月球近10倍處快 速掠過夜空的真實情景。

天文館指出,今天晚間約10點從距離地球 不到月球三分之二遠、僅約29萬公里處掠 過的2024 MK小行星,也屬於具潛在威脅小 行星,但科學家尚未發現確定會撞擊地球的 小行星,暫且不用擔憂。

小行星命名方式不同於其他星體,發現者提 出建議名稱,再經國際天文學聯合會 (IAU)審核後公告。天文館說,中央大學 鹿林天文台於 2007 年發現的小行星,2020 年被正式命名為 300300 號「台北天文館」 小行星。

天文館為此特別專訪中研院天文所院士葉永 炬、中央大學天文所研究員林忠義與鹿林天 文台台長林宏欽,今晚8點將在YouTube 「台北天文館」頻道首播,也會有天文館專 業人員線上解答小行星各類問題。

相關連結

 <u>https://udn.com/news/story/7266/</u> 8062257_

明天是「國際小行星日」 今晚剛好 「小行星近掠地球」天文館直播

發布日期: 2024-07-01

新聞來源:Yahoo!新聞

中天新聞網

臺北天文館表示,哺乳類,也就是人類的祖 先,是因為6600萬年前一場小行星撞擊使 恐龍滅絕才趁勢興起的;平均每50至100 萬年就會發生一次能造成洲際性災難的撞擊 事件。

「國際小行星日」是聯合國在 2016 年設立 的國際性教育活動,以紀念近代最具代表性 的小行星撞擊事件,1908 年 6 月 30 日發生 在俄國的通古斯大爆炸,目的就是為了呼籲 公眾關注小行星撞擊風險,並且未兩綢繆, 為遲早將會來臨的下一次撞擊事件做好準 備。

目前已經被確認的小行星多達數十萬顆,但 並非都具有危險性,天文學家將其中與地球 軌道距離小於 0.05 天文單位,約 750 萬公 里,且絕對星等高於 22.0 等以上者歸類為 「具潛在威脅小行星」(Potentially Hazardous Asteroids, PHAs),現已發現兩 千多顆。

今天晚上10點左右從距離地球不到月球三 分之二遠,僅約29萬公里處掠過的2024 MK小行星也屬於此類,不過科學家尚未發 現確定會撞擊地球的小行星,暫且不用擔 憂。

臺北天文館為此特別專訪了中研院天文所葉 永烜院士、中央大學天文所林忠義研究員與 鹿林天文臺林宏欽臺長,於6月29日20時 在YouTube「臺北天文館」頻道首播,同時 由天文館專業人員線上即時解答有關小行星 的各類問題,若天候許可還將透過天文望遠 鏡直播2024 MK這顆具潛在威脅小行星從近 距離飛掠地球的實況,歡迎觀賞。

相關連結

<u>https://tw.news.yahoo.com/%E6%98</u>
%8E%E5%A4%A9%E6%98%AF-%...

小行星命名「彰化」 王惠美致謝

發布日期:2024-06-26 新聞來源:自由時報

〔記者劉曉欣/彰化報導〕

天上有顆行星叫彰化!今年中華民國天文學 會年會舉行了彰化(336392 Changhua)小 行星頒贈典禮,縣長王惠美表示,感謝小行 星發現人與中央大學的學者,把發現的小行 星命名為「彰化」,這是彰化建縣三百年的 最好紀念。

這個命名為「彰化」的小行星,是二〇〇八 年十月廿三日由中央大學鹿林天文台蕭翔耀 及美國馬里蘭大學的葉泉志博士共同發現, 大小約二公里。蕭翔耀指出,當初和一名高 中生合作,先確認搜尋的固定範圍,再經由 長時間去紀錄移動方向、軌跡、速度與光 度,最後才確定發現新的小行星。

王惠美昨天親自向蕭翔耀等人致謝,她表 示,大家長期在天文學界的努力,努力發現 小行星,並將其中一顆以「彰化」命名,讓 地球的陸地上有彰化縣,抬頭所看的天空還 有一顆名為「彰化」的小行星。

相關連結

<u>https://news.ltn.com.tw/news/lif</u>
e/paper/1653138

天上有同名小行星 彰化縣成立小行星 搜尋隊

發布日期:2024-06-26 新聞來源:新唐人亞太台 【新唐人亞太台 2024 年 06 月 25 日訊】

歡迎回來,日前一顆編號為 336392 小行 星,被中央大學鹿林天文台的蕭翔耀先生, 與美國馬里蘭大學的葉泉志博士共同發現, 中央大學以「彰化」來命名,作為彰化建縣 300 年的紀念,也象徵著對彰化的祝福,彰 化縣也成立小行星搜尋隊,加強縣內的天文 教育。

藍色星球在空中緩緩落下,彰化縣長伸出雙 手接住這顆球,彰化縣小行星搜尋隊正式啟 動。

彰化縣長 王惠美:「希望孩子們從平時, 就能夠養成這個,這個對於天文的喜好,透 過浩瀚的一個探索,能夠讓他更加地有國際 觀。」

彰化縣長王惠美,特別致贈感謝狀,給命名 彰化小行星的中央大學,以及彰化小行星發 現人蕭翔耀先生。

彰化小行星發現人 蕭翔耀:「彰化小行星 它到底經過多久時間去確認它是新的,但是 從發現到命名,我們至少經過了7年左 右。」

中央大學教授 陳文屏:「我們台灣是唯一 參加泛星(計劃)亞洲的國家,我們就有資 格,讓我們的高中生,每一年有2次,每一 次大概有30幾個學校,可以參加國際的競 爭。」

中央大學教授陳文屏表示,以前是要向下看 地圖才會看到彰化,現在往天上看也會看到 彰化(小行星),對於搜尋小行星這件事 情,有了彰化縣的加入以後,相信整個團隊 會更壯大。

相關連結

<u>https://www.ntdtv.com.tw/b5/2024</u>
<u>0625/video/393035.html?...</u>

繼「賴和」小行星之後 天上多了顆 「彰化」閃耀星際

發布日期:2024-06-25 新聞來源:今日新聞

記者顏幸如/彰化報導

中央大學應林天文台自 2002 年至今,已發 現 800 多顆小行星,並取得其中 100 多顆命 名權。繼今年3月以台灣文學之父「賴和」 命名,5月底再舉行彰化小行星頒贈典禮, 彰化縣政府今在「璀璨閃耀彰化小行星」記 者會中,感謝中央大學以「彰化」為小行星 命名,象徵著對彰化建縣 300 年的祝福。

我是廣告 請繼續往下閱讀 國內天文界一年 一度的盛事、2024 年中華民國天文學會年 會日前假國立彰化師範大學舉辦,5月 31 日的大會開幕式中,舉行彰化(336392 Changhua)小行星頒贈典禮,此後浩瀚宇 宙、茫茫星海中有一顆名叫「彰化」的小行 星閃耀天際。中央大學表示,彰化建縣滿 300 年,特將編號 336392 小行星致贈給彰 化,祝賀彰化向下一個 300 年邁進!

彰化小行星於 2008 年 10 月 23 日由中央大 學鹿林天文台蕭翔耀及美國馬里蘭大學的葉 泉志博士共同發現,大小約 2 公里。彰化小 行星繞行太陽一圈 4.33 年(軌道週期), 離太陽最近時(近日點)為 3.39 億公里, 最遠時(遠日點)為 4.59 億公里。

中央大學教授陳文屏表示,小行星很多也很 小,天文的各種天體中,只有小行星可以由 發現者命名。中央大學希望帶給社會正能 量,決定以社會上的賢達團體或是地名來命 名。 彰化小行星發現人蕭翔耀表示,從發現到命 名「彰化」,花費了年時間,小行星非常非 常小,要尋到未知的小行星非常難,要長時 間去紀錄它的移動方向、軌跡、速度、光 度,並透過全球所有天文學家一同確認是否 為已知天體,若不是,就代表發現新的小行 星。

目前以台灣地名命名的小行星有 20 幾處, 除了六都有自己為名的的行星,也有以人名 命名的,例如賴和、吳大猷、周杰倫、甄 珍、齊柏林等。

相關連結

 <u>https://www.nownews.com/news/645</u> 6204

「彰化」小行星閃耀天際 彰化將邁向 下一個 300 年!

發布日期:2024-06-25 新聞來源:台灣生活新聞

記者陳韋町 報導

2024年中華民國天文學會年會舉行了彰化 (336392 Changhua)小行星頒贈典禮,彰 化縣政府為此特別於24日在彰化藝術高中 舉辦「璀璨閃耀彰化小行星」記者會。並邀 請國立中央大學天文所教授陳文屏、中央大 學天文所應林天文台長林宏欽及彰化小行星 發現人蕭翔耀先生蒞臨會場。彰化縣長王惠 美在會上表達感謝之情,並感謝中央大學以 「彰化」為命名,作為紀念彰化建縣300 年,象徵著對彰化的祝福,也為下一個300 年航向璀璨的未來。

王縣長表示,近年來縣府積極培育學生的天 文科學素養與能力,從國中小到高中,通過 多種天文教育活動讓學生探索宇宙的奧妙, 開拓國際視野。例如,南郭國小已有近20 年的天文教育歷史;北斗國中自 2020 年建 置天文臺以來,積極舉辦各項體驗營和教師 增能培訓;彰化藝術高中則於 2022 年成立 了「元宇宙智慧館」,並舉辦各類天文觀星 活動。這些努力都旨在培養學生對天文的喜 好,並通過探索浩瀚的宇宙增強他們的國際 視野。

王縣長還特別感謝國內天文界的重要推手陳 文屏教授,他是「國際天文搜尋聯盟-泛星 計畫」的台灣主持人,特別讓縣立高中的學 生參與全球搜尋小行星的活動,提升學生的 實作經驗與天文觀測技能,激發他們對天文 學的熱情與興趣。此外,感謝鹿林天文台提 供資源,讓彰興國中的學生能到天文台觀測 天文,期望藉由這些合作機會,培養縣內學 生的天文觀測和科研能力,未來為台灣天文 學的發展做出貢獻。

中央大學教授陳文屏表示,小行星很多且很 小,天文的各種天體中,只有小行星可以由 發現者命名。中央大學希望帶給社會正能 量,決定以社會賢達團體或地名命名小行 星。這次命名「彰化」,讓我們從地圖上看 到彰化,如今抬頭看天也能看到「彰化」。 他也提到,台灣是泛星計畫唯一參與的亞洲 國家,讓高中生一年有2次,一次約有30 所學校可以參加國際競爭,大家合作及競爭 去找小行星。

彰化小行星的發現人蕭翔耀先生分享了他的 發現歷程,經過7年的努力,從發現到命名 「彰化」,雖然過程漫長,但發現新天體的 成就感無法言喻。他從小喜愛科學,高中加 入天文社,發現新小行星是一個有計畫的過 程。最終透過全球所有天文學家一同確認是 否為已知天體,若不是就代表發現新的小行 星,這顆彰化小行星。

相關連結

 <u>https://news.st-</u> media.com.tw/news/39041

璀璨閃耀「彰化」小行星 天上地上的 彰化邁向下一個 300 年

發布日期:2024-06-25 新聞來源:台灣好新聞

記者鄧富珍/彰化報導

2024 年中華民國天文學會年會舉行了彰化 (336392 Changhua)小行星頒贈典禮,彰 化縣政府 24 日邀請國立中央大學天文所教 授陳文屏、中央大學天文所鹿林天文台長林 宏欽及彰化小行星發現人蕭翔耀先生蒞臨會 場。縣長王惠美表示,現在抬頭往天上看 去,會有一顆「彰化」的星星,特別謝謝中 央大學鹿林天文台的蕭翔耀先生與美國馬里 蘭大學的葉泉志博士,共同發現了這顆編號 為 336392 小行星,以「彰化」為命名,紀 念彰化建縣 300 年獻上祝福,也為下一個 300 年航向璀璨的未來。

王惠美表示,近年來,從國中小到高中,縣 府積極培育學生的天文科學素養與能力,讓 他們從天文知識中,探索宇宙的奧妙,開拓 宏觀的國際視野。像是南郭國小耕耘天文教 育已長達近20年;北斗國中從2020年建置 天文臺以來,積極辦理各項體驗營隊和教師 增能培訓;彰化藝術高中於2022年成立了 「元宇宙智慧館」,且舉辦各類天文觀星活 動。就是希望孩子們從平時就能養成對於天 文的喜好,透過浩瀚的探索,讓他們更加有 國際觀。

王惠美指出,由陳文屏教授主持的「國際天 文搜尋聯盟-泛星計畫」,讓縣立高中的學 生參與全球搜尋小行星活動,不僅提升了學 生的實作經驗與天文觀測技能,也激發了他 們對天文學的熱情與興趣。另外,也謝謝鹿 林天文台提供資源,讓彰興國中的學生到天 文台觀測天文,期盼藉由這些合作的機會, 培育縣內學生觀測天文及增強科研的能力, 有朝一日,為台灣天文學發展做出貢獻。未 來,縣府將持續與各校合作,邀請專家學者 到學校進行太空科普講座,舉辦各項天文觀 星活動,強化縣內的天文教育。

中央大學教授陳文屏表示,小行星很多也很 小,天文的各種天體中,只有小行星是發現 的人可以提出來命名。中央大學希望帶給社 會正能量,決定以社會上的賢達團體或是地 名來命名,像這一次取名「彰化」,以前是 要向下看地圖才會看到彰化,現在往天上看 也會看到彰化,這是一件很好的事情。另 外,台灣加入泛星計畫利用夏威夷望遠鏡找 到很多小行星,且台灣是參加泛星計畫唯一 的亞洲國家,讓高中生一年有2次,一次約 有 30 所學校可以參加國際競爭,大家合作 及競爭去找小行星。

彰化小行星發現人蕭翔耀先生表示,經過了 7年的時間,從發現到命名彰化,雖然花費 的時間很長,但發現新的天體真的很有成就 感。從小就喜歡科學,國中開始看書,高中 加入天文社,為何能發現新的小行星,雖然 感覺像是大海撈針,但其實是有計畫的,雖 當像是大海撈針,但其實是有計畫的, 驚像是大海撈針,但其實是有計畫的, 點 能確定它是太陽星系的星星短時 間內是不會移動的,若短時間能看到星星移 動,就能確定它是太陽星系的天體,之後還 要長時間去紀錄它的移動方向、軌跡、速 度、光度,並透過全球所有天文學家一同確 認是否為已知天體,若不是就代表發現新的 小行星,這顆彰化小行星。

相關連結

• <u>https://www.taiwanhot.net/news/1</u> 072283/%E7%92%80%E7%92%...

好浪漫!不只是地名 天上有顆行星也 叫「彰化」

發布日期:2024-06-25 新聞來源:自由時報

記者劉曉欣/彰化報導

天上有顆行星叫彰化!今年中華民國天文學 會年會舉行了彰化(336392 Changhua)小 行星頒贈典禮,縣長王惠美今天感謝小行星 發現人與中央大學的學者,把發現的小行星 命名為「彰化」,這是彰化建縣 300 年的最 好紀念。

彰化小行星是 2008 年 10 月 23 日由中央大 學鹿林天文台蕭翔耀,以及美國馬里蘭大學 的葉泉志博士共同發現,大小約 2 公里。蕭 翔耀指出,發現新行星很有成就感,雖然感 覺是大海撈針,但其實是有方法與對策的計畫。

蕭翔耀說,當初和一名高中生合作,先確認 搜尋的固定範圍,因為大部分星星短時間是 不會移動,如果能短時間看到星星移動,就 能確定它是太陽星系的天體,再經由長時間 去紀錄它的移動方向、軌跡、速度與光度, 最後由全球天文學家一起確認這是不是已知 天體,如果不是的話,就代表真的發現新的 小行星了。

中央大學天文所教授陳文屏表示,小行星可 以由發現人來命名,中央大學希望帶給社會 正能量,決定以社會賢達團體或是地名來命 名,就像「彰化小行星」就是以彰化來命 名。台灣是「國際天文搜尋聯盟—泛星計 畫」唯一的亞洲國家,讓高中生可以參加國 際競爭去找小行星。

彰化縣今天邀請彰化小行星發現人之一的蕭 翔耀,以及中央大學天文所教授陳文屏、中 央大學天文所鹿林天文台長林宏欽到彰化藝 術高中,並由王惠美親自致謝,因為大家長 期在天文學界的努力,努力發現小行星,並 將其中一顆以「彰化」命名,讓地球的陸地 上有彰化縣,抬頭所看的天空還有一顆名為 「彰化」的小行星。

王惠美表示,陳文屏教授是「國際天文搜尋 聯盟—泛星計畫」的台灣主持人,也特別讓 彰化縣的學生參與全球搜尋小行星活動,在 天文觀測的過程,激發對天文學的熱情與興 趣。彰化縣多年來也持續推動天文科學素 義,從南郭國小天文台、北斗國中天文台到 彰化藝術高中2022年成立了「元宇宙智慧 館」,也謝謝鹿林天文台提供資源,讓彰興 國中的學生到天文台觀測天文,讓更多學生 對浩瀚宇宙有更多了解。

相關連結

<u>https://news.ltn.com.tw/news/lif</u>
e/breakingnews/4715159

璀璨閃耀「彰化」小行星 天上與地上 的彰化邁向下一個 300 年

發布日期:2024-06-25 新聞來源:蕃薯藤

中央社訊息服務

小行星頒贈典禮,彰化縣政府為感謝國立中 央大學,於今(24)日上午在彰化藝術高中辦 理「璀璨閃耀彰化小行星」記者會,邀請國 立中央大學天文所教授陳文屏、中央大學天 文所應林天文台長林宏欽及彰化小行星發現 人蕭翔耀先生蒞臨會場。縣長王惠美表示, 現在抬頭往天上看去,會有一顆「彰化」的 星星,特別謝謝中央大學應林天文台的蕭翔 耀先生與美國馬里蘭大學的葉泉志博士,共 同發現了這顆編號為 336392 小行星,並感 謝中央大學以「彰化」為命名,作為紀念彰 化建縣 300 年,象徵著對彰化的祝福,也為 下一個 300 年航向璀璨的未來。

王縣長表示,近年來,從國中小到高中,縣 府積極培育學生的天文科學素養與能力,讓 他們從天文知識中,探索宇宙的奧妙,開拓 宏觀的國際視野。像是南郭國小耕耘天文教 育已長達近20年;北斗國中從2020年建置 天文臺以來,積極辦理各項體驗營隊和教師 增能培訓;彰化藝術高中於2022年成立了 「元宇宙智慧館」,且舉辦各類天文觀星活 動。在在就是希望孩子們從平時就能養成對 於天文的喜好,透過浩瀚的探索,讓他們更 加有國際觀。

王縣長指出,也感謝國內天文界重要推手陳 文屏教授,教授是「國際天文搜尋聯盟-泛 星計畫」的台灣主持人,特別讓縣立高中的 學生參與全球搜尋小行星活動,不僅提升了 學生的實作經驗與天文觀測技能,也激發了 他們對天文學的熱情與興趣。另外,也謝謝 鹿林天文台提供資源,讓彰興國中的學生到 天文台觀測天文,期盼藉由這些合作的機 會,培育縣內學生觀測天文及增強科研的能 力,有朝一日,為台灣天文學發展做出貢 獻。未來,縣府將持續與各校合作,邀請專 家學者到學校進行太空科普講座,舉辦各項 天文觀星活動,強化縣內的天文教育。

中央大學教授陳文屏表示,小行星很多也很 小,天文的各種天體中,只有小行星是發現 的人可以提出來命名。中央大學希望帶給社 會正能量,決定以社會上的賢達團體或是地 名來命名,像這一次取名「彰化」,以前是 要向下看地圖才會看到彰化,現在往天上看 也會看到彰化,這是一件很好的事情。很高 興聽到王縣長說彰化縣也會著重在認識大自 然的學科,搜尋小行星這件事,有了彰化縣 的加入以後,相信整個團隊會更壯大,很高 興有新的隊員。另外,台灣加入泛星計畫利 用夏威夷望遠鏡找到很多小行星,且台灣是
參加泛星計畫唯一的亞洲國家,讓高中生一 年有2次,一次約有30所學校可以參加國 際競爭,大家合作及競爭去找小行星。

彰化小行星發現人蕭翔耀先生表示,經過了 7年的時間,從發現到命名彰化,雖然花費 的時間很長,但發現新的天體真的很有成就 感。從小就喜歡科學,國中開始看書,高中 加入天文社,為何能發現新的小行星,雖然 感覺像是大海撈針,但其實是有計畫的,當 時和一名高中生合作計畫,小行星非常非常 小,要尋找到未知的小行星更難,要先確認 好搜尋的固定區域,經由有計畫的搜尋後, 加上大部分的星星短時間內是不會移動的, 若短時間能看到星星移動,就能確定它是太 陽星系的天體,之後還要長時間去紀錄它的 移動方向、軌跡、速度、光度,並透過全球 所有天文學家一同確認是否為已知天體,若 不是就代表發現新的小行星,這顆彰化小行 星。

相關連結

 <u>https://n.yam.com/Article/202406</u> 24628128

璀璨閃耀"彰化"小行星 天上與地上 的彰化邁向下一個 300 年

發布日期:2024-06-25 新聞來源:owlNews

記者孔亮云 / 彰化報導

中華民國天文學會年會舉行了彰化(336392 Changhua)小行星頒贈典禮,彰化縣政府今 (24)日在彰化藝術高中辦理「璀璨閃耀彰 化小行星」記者會,縣長王惠美表示,現在 抬頭往天上看去,會有一顆「彰化」的星 星,特別感謝中央大學鹿林天文台的蕭翔耀 先生與美國馬里蘭大學的葉泉志博士,共同 發現了這顆編號為 336392 小行星,並感謝 中央大學以「彰化」為命名,作為紀念彰化 建縣 300 年,象徵著對彰化的祝福,也為 下一個 300 年航向璀璨的未來。

王惠美表示,近年來,從國中小到高中,縣 府積極培育學生的天文科學素養與能力,讓 他們從天文知識中,探索宇宙的奧妙,開拓 宏觀的國際視野。像是南郭國小耕耘天文教 育已長達近 20 年;北斗國中從 2020 年建 置天文臺以來,積極辦理各項體驗營隊和教 師增能培訓;彰化藝術高中於 2022 年成立 了「元宇宙智慧館」,且舉辦各類天文觀星 活動。在在就是希望孩子們從平時就能養成 對於天文的喜好,透過浩瀚的探索,讓他們 更加有國際觀。

王惠美特別感謝國內天文界的重要推手陳文 屏教授,他是「國際天文搜尋聯盟 - 泛星 計畫」的台灣主持人,陳教授讓縣立高中的 學生參與全球搜尋小行星活動,這不僅提升 了學生的實作經驗與天文觀測技能,也激發 了他們對天文學的熱情與興趣。

王惠美同時感謝鹿林天文台提供資源,讓彰 興國中的學生有機會到天文台觀測天文。她 期盼藉由這些合作機會,培育縣內學生的天 文觀測能力,增強科研能力,期望未來能為 台灣天文學發展做出貢獻。未來,彰化縣政 府將持續與各校合作,邀請專家學者到學校 進行太空科普講座,並舉辦各項天文觀星活 動,強化縣內的天文教育。

中央大學教授陳文屏表示,小行星數量眾多 且體積較小,在天文學的各種天體中,只有 小行星可以由發現者命名。中央大學希望通 過命名來傳遞正能量,因此決定以社會上的 賢達團體或地名來命名。這次將小行星命名 為「彰化」,意味著以前需要在地圖上向下 看才能找到彰化,現在抬頭望天也能看到彰 化,這是一件非常有意義的事情。 陳文屏教授對於彰化縣長王惠美提到的縣內 重視自然科學教育表示認同,並指出有了彰 化縣的加入,搜尋小行星的團隊將更加壯 大。台灣參加了泛星計畫,利用夏威夷的望 遠鏡發現了許多小行星,且台灣是唯一參加 泛星計畫的亞洲國家。這項計畫每年讓約 30 所高中參與兩次國際競爭,學生們在合 作與競爭中共同搜尋小行星,這不僅增強了 學生的實作經驗和天文觀測技能,也激發了 他們對天文學的熱情和興趣。

彰化小行星的發現者蕭翔耀表示,從發現到 命名「彰化」小行星,經歷了7年的時 間,雖然這段時間漫長,但能夠發現新的天 體,確實是非常有成就感。他從小就喜歡科 學,國中時開始閱讀相關書籍,高中加入天 文社,逐步累積了天文知識和觀測經驗。

蕭翔耀說,發現新的小行星雖然像是大海撈 針,但實際上是有計畫的。他當時和一名高 中生合作進行搜尋計畫。小行星非常小,要 找到未知的小行星非常困難,需要先確認搜 尋的固定區域,並進行有計畫的搜尋。

蕭翔耀指出,大部分的星星在短時間內是不 會移動的,如果在短時間內看到星星移動, 就可以確定它是太陽系內的天體。之後需要 長時間記錄它的移動方向、軌跡、速度和光 度,並通過全球天文學家的共同確認,確定 它是否為已知天體,如果不是,就代表發現 了新的小行星,「彰化」小行星正是這樣被 發現的。

相關連結

 <u>https://news.owlting.com/article</u> <u>s/733140</u>

天空有顆以彰化命名的小行星 發現人 蕭翔耀分享心得

發布日期: 2024-06-25

新聞來源:聯合新聞網

記者劉明岩/彰化即時報導

天上有一顆以「彰化」命名的小行星了!這 顆編號 336392 的彰化小行星,是由中央大 學鹿林天文台蕭翔耀與美國馬里蘭大學葉泉 志博士共同發現。彰化縣政府今天邀請蕭翔 耀到彰化藝術高中分享發現小行星的過程, 縣長王惠美表示,將持續邀請專家學者到學 校舉辦太空科普講座、天文觀星活動,強化 縣內天文教育。

彰化縣政府為感謝彰化小行星(336392 Changhua)命名,今天除邀請蕭翔耀外,也 邀請中央大學天文所教授陳文屏、中央大學 天文所鹿林天文台長林宏欽參加答謝儀式,

縣長王惠美表示,現在抬頭往天上看去,會 有一顆「彰化」的星星,感謝中央大學以 「彰化」為命名,作為紀念彰化建縣 300 年,象徵著對彰化的祝福,也為下一個 300 年航向璀璨的未來。

彰化小行星發現人蕭翔耀表示,經過7年的 時間,從發現到命名彰化,雖然花費的時間 很長,但發現新的天體真的很有成就感。蕭 奧彰化並無淵源,他說,當時是和一名高中 生合作計畫,小行星非常小,要尋找到未知 的小行星更難,要先確認好搜尋的固定區 域,經由有計畫的搜尋後,長時間去紀錄它 的移動方向、軌跡、速度、光度,並透過全 球所有天文學家一同確認是否為已知天體, 若不是,就代表發現新的小行星。

王惠美表示,近年來,縣府從國中小到高 中,積極培育學生的天文科學素養與能力, 像南郭國小耕耘天文教育已長達近20年; 北斗國中從2020年建置天文臺以來,積極 辦理各項體驗營隊和教師增能培訓;彰化藝 術高中於2022年成立了「元宇宙智慧 館」,且舉辦各類天文觀星活動,就是希望 孩子們從平時就能養成對於天文的喜好,透 過浩瀚的探索,更加有國際觀。

中央大學教授陳文屏表示,小行星很多也很 小,天文的各種天體中,只有小行星是發現 的人可以提出來命名。中央大學希望帶給社 會正能量,決定以社會上的賢達團體或是地 名來命名,像這一次取名「彰化」,以前是 要向下看地圖才會看到彰化,現在往天上看 也會看到彰化,這是一件很好的事情。

相關連結

 <u>https://udn.com/news/story/7266/</u> 8051330

中央大學發現新行星以「彰化」命名

發布日期:2024-06-25 新聞來源:Yahoo!新聞

記者李河錫報導

2024「中華民國天文學會年會」舉行「彰化 (336392 Changhua)」小行星命名暨頒贈 典禮,彰化縣政府為感謝中央大學,在彰化 藝術高中辦理「璀璨閃耀『彰化』小行星」 發表會,期許學子們能抱持「立足彰化、心 懷國際、航向宇宙」的心境來探索天文學和 宇宙的奧妙。

這顆「編號(336392)命名為『彰化』的小行 星」,是由中央大學鹿林天文台的蕭翔耀先 生與美國馬里蘭大學的葉泉志博士共同發 現,歷經7年觀察和國際認證所命名;縣長 王惠美在會中,特別感謝中央大學天文所積 極推動探索新行星與命名計畫,積極培育學 生們的天文科學素養與能力,不僅開拓宏觀 國際視野,更能探索宇宙奧妙。 這項計畫的主力推手、中央大學陳文屏教授 則表示,在宇宙天體中,小行星很多、也很 小,只有「小行星」是讓發現者可提出命 名,為了帶給社會正能量,決定以社會上賢 達團體或地名來命名;以前是要向下看地圖 才會看到「彰化」,如今往天際看也能看到 「彰化」在天空中閃爍。

「彰化」小行星發現人蕭翔耀則期許,這項 探索「星際計畫」,能提升同學們實作的經 驗與天文觀測技能,未來「鹿林天文台」將 持續提供資源,藉以培育縣境內學生們觀測 天文及增強科研的能力,期盼有朝一日,能 再為台灣天文學、航太計畫的發展做出更閃 耀的貢獻。

相關連結

<u>https://tw.news.yahoo.com/%E4%B8</u>
 %AD%E5%A4%AE%E5%A4%A7%E...

天上有顆行星叫彰化 王惠美感謝中央 大學命名

發布日期:2024-06-25 新聞來源:青年日報

記者張溎壕/彰化報導

浩瀚宇宙有一顆小行星以「彰化」命名!這 顆編號 336392 的彰化小行星,是由中央大 學鹿林天文台蕭翔耀與美國馬里蘭大學葉泉 志博士共同發現。彰化縣政府今(24)日邀 請蕭翔耀到彰化藝術高中分享發現小行星的 過程,縣長王惠美說,將持續邀請專家學者 到學校舉辦太空科普講座、天文觀星活動, 強化縣內天文教育。

彰化小行星是 2008 年 10 月 23 日由中央 大學鹿林天文台蕭翔耀,以及美國馬里蘭大 學的葉泉志博士共同發現,大小約 2 公里。 彰化小行星發現人蕭翔耀表示,經過7年的 時間,從發現到命名彰化,雖然花費的時間 很長,但發現新的天體真的很有成就感。

蕭翔耀說,當初和一名高中生合作,先確 認搜尋的固定範圍,因為大部分星星短時間 是不會移動,如果能短時間看到星星移動, 就能確定它是太陽星系的天體,再經由長時 間去紀錄它的移動方向、軌跡、速度與光 度,最後由全球天文學家一起確認這是不是 已知天體,如果不是的話,就代表真的發現 新的小行星了。

中央大學天文所教授陳文屏表示,小行星 可以由發現人來命名,中央大學希望帶給社 會正能量,決定以社會賢達團體或是地名來 命名,就像「彰化小行星」就是以彰化來命 名。臺灣是「國際天文搜尋聯盟—泛星計 畫」唯一的亞洲國家,讓高中生可以參加國 際競爭去找小行星。

王惠美表示,現在抬頭往天上看去,會有 一顆「彰化」的星星,感謝中央大學以「彰 化」為命名,作為紀念彰化建縣 300 年,象 徵著對彰化的祝福,也為下一個 300 年航向 璀璨的未來。

相關連結

• <u>https://www.ydn.com.tw/news/news</u> InsidePage?chapterID=16...

從科學家到藝術家 中央大學葉永烜 「百花川狂想曲」畫展登場

發布日期:2024-06-20 新聞來源:桃園電子報

記者謎志明 寧靜初夏,榮獲「總統科學 獎」至高殊榮的中央大學院士葉永烜「百花 川狂想曲」畫展在管理二館104書房熱鬧展 開。昨(18)日葉永烜更以「藝術家給科學家 的啟示」為題精彩演講。他認為,藝術與科 學相通,都是透過重覆到逐步深化,以致熟 能生巧、獨樹一格,科學家亦復如是,專心 投入,終究能「化不可能為可

能」。 葉永烜提 到,他是在一個偶然機會開始學油畫,純粹 是興趣所在,之所以能夠一直持續下去,要 感謝另一半和兩個女兒的鼓勵。無師自通的 他,早期從臨摹名家的作品開始,如馬諦斯 和霍普,都是他很喜歡的畫家,後來為省去 洗筆的麻煩,改用畫刀,週遭的人事物都是 他創作靈感來源。

集科學家與藝術家於一身的葉永烜,介紹藝術家時如數家珍。圖:中央大學提供 中央 大學說明,集科學家與藝術家於一身的葉永 炬,介紹藝術家時如數家珍,更能從科學家 的觀點,看出藝術家作品背後隱藏的科學。 他認為,畢卡索大膽的創作,有受到愛因斯 坦「相對論」的啟發。達利變化萬千的時空 作品,則可能受到「量子力學」的影響。波 洛克的作品,則潛藏著數學函數,可能受 「非線性動力學」影響。

中央大學表示,除藝術欣賞,葉永烜也喜歡 藝術家富有哲思的一面,如著名藝術家霍克 尼所說的,「別把成功當作目標,當你越是 一心追求它,越無法得到它。因為成功和快 樂一樣,是求不來的,只能接著什麼而 來。」又如「畫畫的時候,你會專心到渾然 忘我的地步。人一旦可以抽離自己,能夠經 歷的時間就會增加了。」

一路走來,葉永烜說,科學家與藝術家其實 沒有太大分別。藝術家也是從一張白紙開 始,熟能生巧,到無人能及。這何嘗不是追 求學問的人夢寐以求的境界。他年輕時,指 導老師阿爾文責承做研究要專心,不能什麼 都做,否則會一事無成,直到今天,他深刻 體悟到老師所說的真理。 為培養優秀科學人才,葉永烜也發揮巧思, 將其主持的「台灣科學特殊人才提升計畫」 活動內容,以馬諦斯為名,期許像藝術一般 自由奔放,卓然有成。今(113)年7月,葉 永烜與團隊即將舉辦「桃園天文嘉年華」, 旅行到火星靜態展覽、摺紙天文學等活動皆 免費參加,目前已開放報名。其中, PICASSO天文繪畫比賽今年主題為「火星 城」,集中於7月1日至7月31日報名收 件,共分四組,參賽學前組、國小低年級 組、國小中年級組、國小高年級組,得獎作 品將於台北市立天文館、中大天文台展覽。 歡迎大家參加這場太空與天文的盛會,學習 知識。

相關連結

• <u>https://tyenews.com/2024/06/6281</u> 30/

藝術家給科學家的啟示— 中央大學葉 永烜院士「百花川狂想曲」畫展

發布日期:2024-06-20 新聞來源:蕃薯藤

中央社訊息服務

榮獲「總統科學獎」的中央大學葉永烜院士 「百花川狂想曲」畫展在中央大學管理二館 104 書房展出。

寧靜初夏,榮獲「總統科學獎」至高殊榮的 葉永烜院士「百花川狂想曲」畫展在中央大 學管理二館熱鬧展開。6月18日葉永烜院 士更以「藝術家給科學家的啟示」為題精彩 演講。他認為,藝術與科學相通,都是透過 重覆到逐步深化,以致熟能生巧、獨樹一 格,科學家亦復如是,專心投入,終究能 「化不可能為可能」! 葉永烜提到,他是在一個偶然機會開始學油 畫,純粹是興趣所在,之所以能夠一直持續 下去,要感謝另一半和兩個女兒的鼓勵。無 師自通的他,早期從臨摹名家的作品開始, 如馬諦斯和霍普,都是他很喜歡的畫家,後 來為省去洗筆的麻煩,改用畫刀,週遭的人 事物都是他創作靈感來源。

集科學家與藝術家於一身的他,介紹藝術家 時如數家珍,更能從科學家的觀點,看出藝 術家作品背後隱藏的科學。他認為,畢卡索 大膽的創作,有受到愛因斯坦「相對論」的 啟發。達利變化萬千的時空作品,則可能受 到「量子力學」的影響。波洛克的作品,則 潛藏著數學函數,可能受「非線性動力學」 (分形 Fractal)影響。

除藝術欣賞,他也喜歡藝術家富有哲思的一 面,如著名藝術家霍克尼所說的,「別把成 功當作目標,當你越是一心追求它,越無法 得到它。因為成功和快樂一樣,是求不來 的,只能接著什麼而來。」又如「畫畫的時 候,你會專心到渾然忘我的地步。人一旦可 以抽離自己,能夠經歷的時間就會增加 了。」

一路走來,葉永烜認為,科學家與藝術家其 實沒有太大分別。藝術家也是從一張白紙開 始,熟能生巧,到無人能及。這何嘗不是追 求學問的人夢寐以求的境界。他年輕時,指 導老師阿爾文教授(Hannes Alfven)責承做 研究要專心,不能什麼都做,否則會一事無 成,直到今天,他深刻體悟到老師所說的真 理。

為培養優秀科學人才,他也發揮巧思,將其 主持的「臺灣科學特殊人才提升計畫」活動 內容,以馬諦斯為名(Methods of Advanced Tech-niques and Instruments for Solar System Exploration,簡稱 MATISSE),期許像藝術一般自由奔放,卓 然有成。

今年七月,葉永烜院士與團隊即將舉辦「桃 園天文嘉年華」,旅行到火星靜態展覽、摺 紙天文學等活動皆免費參加,目前已開放報 名。其中,PICASSO天文繪畫比賽今年主題 為「火星城」,集中於7/1-7/31 報名收 件,共分四組:參賽學前組、國小低年級 組、國小中年級組、國小高年級組,得獎作 品將於台北市立天文館、中大天文台展覽。 歡迎大家參加這場太空與天文的盛會,學習 知識。

相關連結

 <u>https://n.yam.com/Article/202406</u> 19274409

藝術家給科學家的啟示— 中央大學葉 永烜院士「百花川狂想曲」畫展

發布日期:2024-06-20 新聞來源:MSN

中央社訊息服務

寧靜初夏,榮獲「總統科學獎」至高殊榮的 葉永烜院士「百花川狂想曲」畫展在中央大 學管理二館熱鬧展開。6月18日葉永烜院 士更以「藝術家給科學家的啟示」為題精彩 演講。他認為,藝術與科學相通,都是透過 重覆到逐步深化,以致熟能生巧、獨樹一 格,科學家亦復如是,專心投入,終究能 「化不可能為可能」!

葉永烜提到,他是在一個偶然機會開始學油 畫,純粹是興趣所在,之所以能夠一直持續 下去,要感謝另一半和兩個女兒的鼓勵。無 師自通的他,早期從臨摹名家的作品開始, 如馬諦斯和霍普,都是他很喜歡的畫家,後 來為省去洗筆的麻煩,改用畫刀,週遭的人 事物都是他創作靈感來源。

集科學家與藝術家於一身的他,介紹藝術家 時如數家珍,更能從科學家的觀點,看出藝 術家作品背後隱藏的科學。他認為,畢卡索 大膽的創作,有受到愛因斯坦「相對論」的 啟發。達利變化萬千的時空作品,則可能受 了量子力學」的影響。波洛克的作品,則 了量子力學」的影響。「非線性動力學」 (分形Fractal)影響。哈藝術欣賞,他 也喜歡藝術家富有哲思的一面,如著名藝術 家電克尼所說的,「別把成功當作目標,當 你和快樂一樣,是求不來的,只能接著什麼 而來。」又如「畫畫的時候,你會專心到渾 經歷的時間就會增加了。」

一路走來,葉永烜認為,科學家與藝術家其 實沒有太大分別。藝術家也是從一張白紙開 始,熟能生巧,到無人能及。這何嘗不是追 求學問的人夢寐以求的境界。他年輕時,指 導老師阿爾文教授(Hannes Alfven)責承做 研究要專心,不能什麼都做,否則會一事無 成,直到今天,他深刻體悟到老師所說的真 理。為培養優秀科學人才,他也發揮巧 思,將其主持的「臺灣科學特殊人才提升計 畫」活動內容,以馬諦斯為名 (Methods of Advanced Tech-niques and Instruments for Solar System Exploration,簡稱 MATISSE),期許像藝術一般自由奔放,卓 然有成。

今年七月,葉永烜院士與團隊即將舉辦「桃 園天文嘉年華」,旅行到火星靜態展覽、摺 紙天文學等活動皆免費參加,目前已開放報 名。其中,PICASSO 天文繪畫比賽今年主題 為「火星城」,集中於7/1-7/31 報名收 件,共分四組:參賽學前組、國小低年級 組、國小中年級組、國小高年級組,得獎作 品將於台北市立天文館、中大天文台展覽。 歡迎大家參加這場太空與天文的盛會,學習 知識。

相關連結

<u>https://www.msn.com/zh-</u>
 <u>tw/news/other/%E8%97%9D%E8%A1%93</u>
 ...

藝術家給科學家的啟示 中大百花川狂 想曲畫展

發布日期:2024-06-20 新聞來源:大紀元

記者徐乃義/桃園報導

寧靜初夏,榮獲「總統科學獎」至高殊榮的 中央大學葉永烜院士「百花川狂想曲」畫展 在管理二館104 書房熱鬧展開。葉永烜院士 更以「藝術家給科學家的啟示」為題精彩演 講。他認為,藝術與科學相通,都是透過重 覆到逐步深化,以致熟能生巧、獨樹一格, 科學家亦復如是,專心投入,終究能「化不 可能為可能」! 葉永烜提到,他是在一個 偶然機會開始學油畫,純粹是興趣所在,之 所以能夠一直持續下去,要感謝另一半和兩 個女兒的鼓勵。無師自通的他,早期從臨摹 名家的作品開始,如馬諦斯和霍普,都是他 很喜歡的畫家,後來為省去洗筆的麻煩,改 用畫刀,週遭的人事物都是他創作靈感來 源。 集科學家與藝術家於一身的他,介紹 藝術家時如數家珍,更能從科學家的觀點, 看出藝術家作品背後隱藏的科學。他認為, 畢卡索大膽的創作,有受到愛因斯坦「相對 論」的啟發。達利變化萬千的時空作品,則 可能受到「量子力學」的影響。波洛克的作 品,則潛藏著數學函數,可能受「非線性動 力學」(分形 Fractal)影響。

除藝術欣賞,他也喜歡藝術家富有哲思的一 面,如著名藝術家霍克尼所說的,「別把成 功當作目標,當你越是一心追求它,越無法 得到它。因為成功和快樂一樣,是求不來 的,只能接著什麼而來。」又如「畫畫的時 候,你會專心到渾然忘我的地步。人一旦可 以抽離自己,能夠經歷的時間就會增加 了。」

一路走來,葉永烜認為,科學家與藝術家其 實沒有太大分別。藝術家也是從一張白紙開 始,熟能生巧,到無人能及。這何嘗不是追 求學問的人夢寐以求的境界。他年輕時,指 導老師阿爾文教授(Hannes Alfven)責承做 研究要專心,不能什麼都做,否則會一事無 成,直到今天,他深刻體悟到老師所說的真 理。

為培養優秀科學人才,他也發揮巧思,將其 主持的「臺灣科學特殊人才提升計畫」活動 內容,以馬諦斯為名(Methods of Advanced Tech-niques and Instruments for Solar System Exploration,簡稱 MATISSE),期許像藝術一般自由奔放,卓 然有成。

今年七月,葉永烜院士與團隊即將舉辦「桃 園天文嘉年華」,旅行到火星靜態展覽、摺 紙天文學等活動皆免費參加,目前已開放報 名。其中,PICASSO天文繪畫比賽今年主題 為「火星城」,集中於7/1-7/31報名收 件,共分四組:參賽學前組、國小低年級 組、國小中年級組、國小高年級組,得獎作 品將於台北市立天文館、中大天文台展覽。 歡迎大家參加這場太空與天文的盛會,學習 知識。

相關連結

• <u>https://www.epochtimes.com.tw/n4</u> 43445/%E8%97%9D%E8%A1%9... 藝術家給科學家的啟示 葉永烜展〈百 花川狂想曲〉

發布日期:2024-06-20 新聞來源:經濟日報

經濟日報 曹松清

寧靜初夏,榮獲「總統科學獎」至高殊榮的 中央大學葉永烜院士「百花川狂想曲」畫展 在管理二館104書房熱鬧展開。6月18日 葉永烜更以「藝術家給科學家的啟示」為題 精彩演講。他認為,藝術與科學相通,都是 透過重覆到逐步深化,以致熟能生巧、獨樹 一格,科學家亦復如是,專心投入,終究能 「化不可能為可能」! 葉永烜提到,他是 在一個偶然機會開始學油畫,純粹是興趣所 在,之所以能夠一直持續下去,要感謝另一 半和兩個女兒的鼓勵。無師自通的他,早期 從臨摹名家的作品開始,如馬諦斯和霍普, 都是他很喜歡的畫家,後來為省去洗筆的麻 煩,改用畫刀,週遭的人事物都是他創作靈 感來源。

集科學家與藝術家於一身的他,介紹藝術家 時如數家珍,更能從科學家的觀點,看出藝 術家作品背後隱藏的科學。他認為,畢卡索 大膽的創作,有受到愛因斯坦「相對論」的 啟發。達利變化萬千的時空作品,則可能受 到「量子力學」的影響。波洛克的作品,則 潛藏著數學函數,可能受「非線性動力學」 (分形 Fractal)影響。

除藝術欣賞,他也喜歡藝術家富有哲思的一 面,如著名藝術家霍克尼所說的,「別把成 功當作目標,當你越是一心追求它,越無法 得到它。因為成功和快樂一樣,是求不來 的,只能接著什麼而來。」又如「畫畫的時 候,你會專心到渾然忘我的地步。人一旦可 以抽離自己,能夠經歷的時間就會增加 了。」一路走來,葉永烜認為,科學家與 藝術家其實沒有太大分別。藝術家也是從一 張白紙開始,熟能生巧,到無人能及。這何 嘗不是追求學問的人夢寐以求的境界。他年 輕時,指導老師阿爾文教授(Hannes Alfven)責承做研究要專心,不能什麼都 做,否則會一事無成,直到今天,他深刻體 悟到老師所說的真理。

為培養優秀科學人才,他也發揮巧思,將其 主持的「臺灣科學特殊人才提升計畫」活動 內容,以馬諦斯為名 (Methods of Advanced Tech-niques and Instruments for Solar System Exploration,簡稱 MATISSE),期許像藝術一般自由奔放,卓 然有成。

今年7月,葉永烜與團隊即將舉辦「桃園天 文嘉年華」,旅行到火星靜態展覽、摺紙天 文學等活動皆免費參加,目前已開放報名。 其中,PICASSO天文繪畫比賽今年主題為 「火星城」,集中於7/1-7/31報名收件, 共分四組:參賽學前組、國小低年級組、國 小中年級組、國小高年級組,得獎作品將於 台北市立天文館、中大天文台展覽。歡迎大 家參加這場太空與天文的盛會,學習知識。

相關連結

 <u>https://money.udn.com/money/stor</u> y/5635/8041956?from=edn...

臺灣研究團隊在超暗矮星系「室女 III」中 首次發現了三顆天琴 RR 型變 星

發布日期:2024-05-20 新聞來源:國家地理

段皓元

臺灣研究團隊在超暗矮星系「室女 III」中 首次發現了三顆天琴 RR 型變星,這使得室 女 III 與地球之間的距離得到了證實。

國立中央大學天文研究所饒兆聰教授研究團 隊,使用位於臺灣的最大地面光學望遠鏡, 口徑1公尺的鹿林天文臺,首次觀測到位於 超暗矮星系室女III中的三顆天琴RR型變 星。天琴 RR 型變星是一種變星,其類型與 位於天琴座的「天琴 RR」變星相同。這種 變星的光變週期與它的絕對亮度有緊密的關 聯,因此可以透過觀測天琴 RR 型變星的光 變週期來推算其絕對亮度。擁有絕對亮度 後,我們便能測算出距離,使得天琴 RR 型 變星成為測量距離的理想標準星之一。2023 年發現的「室女III」超暗矮星系一直是天 文學家想深入了解的天體之一。在室女 []] 發現天琴 RR 型變星後,證實了其與地球的 距離為約50萬光年,與天文學家先前的推 测一致。此外,根據以往的經驗模型,天文 學家曾估計室女 [1] 中最多可能存在一顆天 琴RR型變星,然而這次一次發現三顆,表 示經驗模型可能需要修正。

相關連結

 <u>https://www.natgeomedia.com/scie</u> nce/article/content-172...

南美館辦陳其寬紀念展

發布日期: 2024-04-26

新聞來源:波新聞

波新聞/翁順利 臺南市美術館為建築與 水墨先驅陳其寬所策劃的「陳其寬:雙曲· 交響」紀念展,25日盛大開幕,展覽以生 活、目光心象、宇宙、建築與家庭等主題呈 現,生動展示陳其寬一生的建築與藝術成 就,並以「世界地圖」探尋他在世界各地的 足跡與建築作品,大都是首度公開展示的收 藏珍品。 這次展覽從香港、新加坡及國 內各地商借珍貴藏品,館方策展人更親自至 美國夏威夷研調取件,有許多展品皆為首度 面世,成為近20年來最完整、最全面的陳 其寬個展。 展覽名稱中的「雙曲」象徵 著陳其寬在雙重領域中的成就,與當代盛行 的「薄殼雙曲」現代建築概念相呼應。展場 設計以東方園林風格呈現,梳理1940 年代 至 2007 年之間,陳其寬所繪製的建築圖與 水墨作品,探索於中國、美國、臺灣等地各 時期之建築訓練與前衛的美學造境。 中 央大學周景揚校長到場頒發陳其寬(236851 Chenchikwan)小行星證書,交給遺孀林芙美 女士,紀念陳其寬先生於建築界與藝術界的 傑出成就。展覽即日起展出至9月22 日。

陳其寬1921年生, 2007年逝,南美館在 陳其寬百歲冥誕之際,與東海大學攜手合作 辦展,別具意義。在世期間以建築師為本業 從事水墨創作逾50年,建築作品橫跨全 球。

相關連結

 <u>https://www.bo6s.com.tw/news_det</u> ail.php?NewsID=80848

中大頒贈陳其寬小行星 向臺灣建築與 藝術大師致敬

發布日期:2024-04-26 新聞來源:經濟日報 經濟日報/曹松清 為感念中央大學傑出 校友暨名譽博士的卓越貢獻,中央大學於今 (25)日臺南市美術館「陳其寬:雙曲·交 響」紀念展,舉行陳其寬(236851 Chenchikwan)小行星頒贈儀式,紀念陳其寬 先生於建築界與藝術界的傑出成就。 今 年適逢陳其寬103歲冥誕,臺南市美術館隆 重推出「陳其寬:雙曲·交響」紀念展,以 「生活」、「目光心象」、「宇宙」及「建

築與家庭」等四大主題,精心呈現陳其寬一 生的建築與藝術成就。陳其寬(1921-2007) 出生於北平,是建築師與藝術家。 他的 繪畫創作突破傳統中國繪畫窠臼,揉合西方 建築概念與自然意象,以「意眼」觀照大千 世界。他於1995年獲中華民國第一屆傑出 建築師,2004 年獲國家文化藝術基金會頒 布的美術類國家文藝獎。 中央大學校長 周景揚表示,陳其寬為中央大學傑出校友, 1968年中大遷校中壢雙連坡,應邀擔任中 **壢母校校園建築之總規劃,校園依陳其寬井** 田棋盤概念精心設計,綠白相間的中正圖書 館位於校園中軸線上,特色為內有天井花 園,位居校園核心,象徵知識的泉源,秉持 「誠於中,樸於外」的校訓精神,設計簡約 而古樸。為了表彰他對中央大學校園規劃及 在建築界的貢獻,將編號 236851 陳其寬小 行星致贈其家屬,向陳其寬致敬。 陳其 寬(236851 Chenchikwan)小行星, 2007年9 月15日由中央大學鹿林天文台林啟生及美 國馬里蘭大學的葉泉志博士共同發現,大小 約3.3公里。賴和小行星繞行太陽一圈 4.31 年(軌道週期),離太陽最近時(近 日點)為3.29億公里,最遠時(遠日點) 為 4.66 億公里。

中央大學從 2006 年開始的鹿林巡天計畫, 不但曾發現台灣史上的第一顆彗星,同時也 發現了 800 多顆小行星,使台灣成為亞洲發 現小行星最活躍的地方之一。卓越的天文研 究成果,充份展現台灣人以小搏大、努力不 懈的精神,期許透過小行星的命名與頒贈, 看見台灣更多可貴的價值。

相關連結

 <u>https://money.udn.com/money/stor</u> y/5635/7924012?from=edn...

致敬台灣建築與藝術大師 中大頒贈陳 其寬小行星 發布日期: 2024-04-26

新聞來源:中央通訊社

中央社/記者許秩維 感念已故傑出校友 暨名譽博士陳其寬的卓越貢獻,中央大學今 天將編號 236851 陳其寬小行星致贈其家 屬,紀念陳其寬在建築界和藝術界的傑出成 中央大學今天發布新聞稿指出,今 就。 年適逢陳其寬103歲冥誕,台南市美術館推 出「陳其寬:雙曲·交響」紀念展,以「生 活」、「目光心象」、「宇宙」及「建築與 家庭」4 大主題,呈現陳其寬一生的建築與 藝術成就。 陳其寬是建築師與藝術家, 其繪畫創作突破傳統中國繪畫窠臼,揉合西 方建築概念與自然意象,並於1995年獲選 中華民國第1屆傑出建築師,2004 年獲國 家文化藝術基金會頒發美術類國家文藝 中央大學校長周景揚表示,陳其寬 獎。 為中央大學傑出校友,曾應邀擔任中壢母校 校園建築的總規劃,校園依陳其寬的井田棋 盤概念精心設計,綠白相間的中正圖書館位 於校園中軸線上,內有天井花園位居校園核 心,象徵知識的泉源。

為表彰陳其寬對中央大學校園規劃和建築界 的貢獻,中央大學今天將編號236851 陳其 寬小行星致贈其家屬,向陳其寬致敬;陳其 寬小行星於2007年9月15日由中央大學鹿 林天文台林啟生及美國馬里蘭大學博士葉泉 志共同發現,大小約3.3公里。

相關連結

<u>https://www.cna.com.tw/news/ahel</u>
 <u>/202404250310.aspx</u>

中央大學頒贈陳其寬小行星 向台灣建 築大師致敬

發布日期:2024-04-26 新聞來源:聯合新聞網

聯合報/ 記者許維寧/台北即時報導 今 年適逢建築設計師陳其寬103歲冥誕,國立 中央大學今日於台南市美術館「陳其寬:雙 曲·交響」紀念展,舉行陳其寬(236851 Chenchikwan)小行星頒贈儀式,紀念陳其 寬於建築界與藝術界的傑出成就。 陳其 寬出生於北平,繪畫創作突破傳統中國繪畫 **窠臼,揉合西方建築概念與自然意象,以** 「意眼」觀照大千世界,於1995年獲中華 民國第一屆傑出建築師,2004年獲國家文 化藝術基金會頒布的美術類國家文藝 獎。 台南市美術館推出「陳其寬:雙 曲·交響」紀念展,以「生活」、「目光心 象」、「宇宙」及「建築與家庭」等四大主 題,呈現陳其寬一生的建築與藝術成 就。 中央大學周景揚校長表示,陳其寬 為中央大學傑出校友,1968年中大遷校中 壢雙連坡,應邀擔任校園建築總規劃,校園 依陳其寬井田棋盤概念精心設計,綠白相間 的中正圖書館位於校園中軸線上,特色為內 有天井花園,位居校園核心,象徵知識的泉 源,秉持「誠於中,樸於外」的校訓精神, 設計簡約而古樸。 周景揚表示,為了表 彰陳其寬對中央大學校園規劃及在建築界的 貢獻,將編號 236851 陳其寬小行星致贈其 家屬,向陳其寬致敬。 陳其寬(236851 Chenchikwan) 小行星, 2007年9月15日 由中央大學鹿林天文台林啟生及美國馬里蘭 大學的葉泉志博士共同發現,大小約3.3公 里。賴和小行星繞行太陽一圈 4.31 年 (軌 道週期),離太陽最近時(近日點)為 3.29 億公里,最遠時(遠日點)為4.66 億 公里。

中央大學從2006年開始的鹿林巡天計畫, 曾發現台灣史上第一顆彗星,同時也發現了 800多顆小行星,使台灣成為亞洲發現小行 星最活躍的地方之一。

相關連結

<u>https://udn.com/news/story/7266/</u> 7923716

小行星獲命名民主先驅「賴和」賴清 德:520上任後會向其學習

發布日期:2024-04-01 新聞來源:天天要聞

國際天文學聯合會(IAU)近日正式通過, 將編號 597966 的小行星命名爲「賴和(Lai He)」,副總統賴清德說,賴和是醫界典 範,除妙手如春、視病如親,對於推動臺灣 文學發展也有顯著貢獻,更是民主運動先 驅;他也說,520上任後,他也會向賴和學 習,不僅照顧弱勢民衆也會重視教育文化, 還深化臺灣的民主,讓臺灣社會成爲臺灣社 會稱羨的國家。

賴和小行星的由來,是由中央大學天文研 究所鹿林天文臺林啓生及美國馬里蘭大學博 士葉泉志,在2008年1月12日共同發現編 號 597966 小行星,而後彰化高中圖書館退 休主任吕興忠與教師遊大立合作,向中央大 學天文研究所申請,以日治時期臺灣新文學 的啓蒙者賴和爲名,國際天文學聯合會近日 正式通過,將小行星命名為「賴 和」。 賴和基金會與賴和家屬今天贈送 國立臺灣文學館開發的「賴和一杆秤仔球 棒」給賴副總統,這個編號是16號,剛好 賴總統也是第16任當選,期待他就任總統 後,持續以公義捍衛臺灣。 賴清德表 示,賴和是民主運動的先驅,他跟蔣渭水一 起參加臺灣議會請願團,也成立臺灣文化協 會,賴和一生不僅造福當地的民衆,也深深 影響國家,臺灣社會對賴和很景仰。 賴 清德說,在浩瀚無垠的宇宙當中,爲賴和命 名聽了就很感動,這是令人欽佩的,不僅專 業而且非常有心,讓臺灣國際社會看的見, 這也是莫大的鼓勵;520上任後,他也會向 賴和學習,不僅照顧弱勢民衆也會重視教育

文化,還深化臺灣的民主,讓臺灣社會成爲
 臺灣社會稱羨的國家。
 【本文轉載自
 2024-03-30/天天要聞】

相關連結

<u>https://www.bg3.co/a/xiao-xing-xing-huo-ming-ming-min-z...</u>

副總統出席「賴和小行星」國際命名發 表會重視教育文化

發布日期:2024-04-01 新聞來源:臺灣人民報

賴清德副總統今(30)日上午出席「賴和 小行星」國際命名發表會時表示,「賴和小 行星」不僅是臺灣天文科學領域的重要貢 獻,也讓國際社會看見臺灣的光芒。未來他 520 就任總統之後,將學習賴和的精神,照 顧弱勢民眾,重視教育文化,捍衛並深化臺 灣民主,讓臺灣成為國際稱羨的文明國家。

副總統致詞時表示,賴和是醫界的典範, 不僅視病如親,照顧弱勢民眾,同時也是臺 灣新文學之父,推動臺灣文學發展有非常大 的貢獻。此外,賴和是民主運動先驅,和蔣 渭水等人共同推動成立台灣文化協會,為弱 勢族群發聲,精神令人感佩。 副總統感 謝中央大學、鹿林天文台等單位的努力與付 出,在浩瀚無垠的宇宙中,發現及命名「賴 和小行星」,這不僅是臺灣天文科學領域的 重要貢獻,也讓國際社會看見臺灣的光芒, 未來他 520 就任總統之後,將學習賴和的精 神,照顧弱勢民眾,重視教育文化,捍衛並 深化臺灣民主,讓臺灣成為國際稱羨的文明 國家,也讓臺灣成為世界民主的 MVP,我們 一起努力。 【本文轉載自 2024-03-30/臺 灣人民報】

相關連結

<u>https://www.peponews.tw/%E5%89%A</u>
 F%E7%B8%BD%E7%B5%B1%E5%...

賴和小行星獲國際命名賴副總統:感動 宇宙光芒來自台灣

發布日期:2024-04-01 新聞來源:LIFE 台灣生活網

國際天文學聯合會(IAU)最近通過,正式命 名編號 597966 小行星為「賴和(Lai He)」,賴和基金會今天(30 日)舉辦「賴和 小行星」國際發表會,緬懷賴和對台灣的卓 越貢獻。受邀出席的副總統賴清德表示,他 很感動在浩瀚無垠的宇宙中,有光芒來自台 灣,他承諾未來就任總統後,將學習賴和照 顧弱勢、重視教育的精神,捍衛台灣民主, 讓台灣成為世界民主的 MVP。

編號 597966 小行星,為 2008 年1月12 日由中央大學天文研究所鹿林天文台林啟生 及美國馬里蘭大學博士葉泉志共同發現,隨 後彰化高中圖書館退休老師呂興忠與游大立 合作,向中央大學天文研究所申請,以日治 時期台灣新文學的啟蒙者賴和為名,近日經 國際天文學聯合會通過,正式命名為「賴和 (Lai He)」,讓國際認識台灣可貴的人文。 賴和基金會與中央大學 30 日在台灣文學基 地舉辦「賴和小行星」國際命名發表會,並 進行「賴和小行星頒贈儀式」,緬懷賴和對 台灣的卓越貢獻。 賴和基金會董事長吳 潮聰表示,今年適逢賴和130年冥誕,也是 賴和文教基金會成立 30 年,「賴和小行 星」獲得國際命名通過,除了彰顯其文學、 文化成就獲得肯定外,更期盼賴和的精神, 有如星星的光芒普照世人, 傳遞人文關懷的 精神。 頒贈儀式上也特別邀請副總統賴 清德出席。賴副總統表示,賴和是醫界典 範,除妙手如春、視病如親,對於推動台灣 文學發展也有顯著貢獻,更是民主運動先 驅,台灣社會對賴和都非常景仰。 賴副

總統說,他很感動浩瀚無垠的宇宙中,成千 上萬發亮的星星裡,有來自台灣的仁醫的光 芒,他未來就任總統後,一定會效法賴和的 精神。賴副總統說: 『(原音)我 520 上任之 後,我也會向賴和學習,不僅僅會照顧弱勢 的民眾,我也會重視教育文化,我也會捍 衛、深化台灣的民主,讓台灣社會成為國際 稱羨的民主國家,也讓台灣成為世界民主的 MVP о л 隨後賴副總統也與中央大學校長 周景揚共同致贈「賴和小行星銘版」給賴和 的家屬及賴和基金會留念;另外,賴和基金 會與賴和家屬也特別贈送國立台灣文學館開 發的「一桿秤仔」球棒給棒球迷賴副總統, 上頭並刻有限定版16的編號,期待第16任 總統就任後,能持續以公義捍衛台 灣。 【本文轉載自 2024-03-30/LIFE 台

灣生活網】

相關連結

 <u>https://m.life.tw/?app=view&no=2</u> 307412#google_vignette_

賴和小行星國際命名發表會 賴清德: 重視教育文化

發布日期:2024-04-01 新聞來源:互傳媒

賴清德副總統30日上午出席「賴和小行 星」國際命名發表會時表示,「賴和小行 星」不僅是臺灣天文科學領域的重要貢獻, 也讓國際社會看見臺灣的光芒。未來他520 就任總統之後,將學習賴和的精神,照顧弱 勢民眾,重視教育文化,捍衛並深化臺灣民 主,讓臺灣成為國際稱羨的文明國家。

賴清德表示,賴和是醫界的典範,不僅視 病如親,照顧弱勢民眾,同時也是臺灣新文 學之父,推動臺灣文學發展有非常大的貢 獻。此外,賴和是民主運動先驅,和蔣渭水 等人共同推動成立台灣文化協會,為弱勢族 群發聲,精神令人感佩。 賴清德感謝中 央大學、應林天文台等單位的努力與付出, 在浩瀚無垠的宇宙中,發現及命名「賴和小 行星」,這不僅是臺灣天文科學領域的重要 貢獻,也讓國際社會看見臺灣的光芒,未來 他520就任總統之後,將學習賴和的精神, 照顧弱勢民眾,重視教育文化,捍衛並深化 臺灣民主,讓臺灣成為國際稱羨的文明國 家,也讓臺灣成為世界民主的 MVP,我們一 起努力。 【本文轉載自 2024-03-30/互 傳媒】

相關連結

 <u>https://hoomedia.com.tw/2024/03/</u> 31/13290/

小行星獲命名賴和賴清德:宇宙有光芒 來自台灣

發布日期:2024-04-01 新聞來源:華人今日新聞

國際天文學聯合會(IAU)近日正式通過, 將編號 597966 的小行星命名為「賴和(Lai He)」。副總統賴清德說,感動宇宙有光芒 來自台灣,未來將師法賴和照顧弱勢、重視 教育,捍衛台灣民主。

今年是賴和130年冥誕,賴和文教基金會 與國立中央大學今天在台灣文學基地舉辦 「賴和小行星」國際命名發表會,緬懷台灣 新文學之父賴和對台灣的貢獻。副總統、國 立中央大學校長周景揚、賴和文教基金會董 事長吳潮聰、賴和長孫賴悅顏等人出

席。 賴和(Lai He)小行星的由來,原 來是中央大學天文研究所應林天文台林啟生 及美國馬里蘭大學博士葉泉志,在2008年 1月12日共同發現編號597966小行星,而 後彰化高中圖書館退休主任呂興忠與教師游

大立合作,向中央大學天文研究所申請,以 日治時期台灣新文學的啟蒙者賴和為名,國 際天文學聯合會近日正式通過,將小行星命 名為「賴和(Lai He)」。 副總統致詞 表示,賴和是醫界典範,除妙手如春、視病 如親,對於推動台灣文學發展也有顯著貢 獻,更是民主運動先驅,曾與蔣渭水一起參 加台灣議會請願團、參與台灣文化協會成 立,可說是上醫醫國、造福民眾,更影響國 家方向,台灣社會對賴和都非常景 仰。 賴副總統說,感動浩瀚無垠的宇宙 中、成千上萬發亮的星星裡,有來自台灣的 光芒,是一位仁醫盡心盡力照顧貧窮民眾, 在那樣辛苦的年代不忘為台灣民眾發聲。他 未來就任總統後,也將師法賴和照顧弱勢、 重視教育,並捍衛台灣民主、深化台灣民 主,讓台灣成為國際稱羨的國家、成為世界 民主 MVP。 賴和基金會與賴和家屬今天 贈送國立台灣文學館開發的「一桿秤仔球 棒」給賴副總統,期待他就任總統後,持續 以公義捍衛台灣。 【本文轉載自 2024-03-30/華人今日新聞】

相關連結

 <u>http://www.chinesedaily.com/focu</u> s_list.asp?no=c528811.t.._

小行星獲命名賴和賴清德感動宇宙光芒 來自台灣

發布日期:2024-04-01 新聞來源:放言

國際天文學聯合會(IAU)近日正式通過, 將編號 597966 的小行星命名為「賴和(Lai He)」。副總統賴清德說,感動宇宙有光芒 來自台灣,未來將師法賴和照顧弱勢、重視 教育,捍衛台灣民主。

今年是賴和130年冥誕,賴和文教基金 會與國立中央大學今天在台灣文學基地舉辦 「賴和小行星」國際命名發表會,緬懷台灣 新文學之父賴和對台灣的貢獻。副總統、國 立中央大學校長周景揚、賴和文教基金會董 事長吳潮聰、賴和長孫賴悅顏等人出 席。 賴和(Lai He)小行星的由來, 原來是中央大學天文研究所鹿林天文台林啟 生及美國馬里蘭大學博士葉泉志,在2008 年1月12日共同發現編號597966小行星, 而後彰化高中圖書館退休主任呂興忠與教師 游大立合作,向中央大學天文研究所申請, 以日治時期台灣新文學的啟蒙者賴和為名, 國際天文學聯合會近日正式通過,將小行星 命名為「賴和(Lai He)」。 副總統 致詞表示,賴和是醫界典範,除妙手如春、 視病如親,對於推動台灣文學發展也有顯著 貢獻,更是民主運動先驅,曾與蔣渭水一起 參加台灣議會請願團、參與台灣文化協會成 立,可說是上醫醫國、造福民眾,更影響國 家方向,台灣社會對賴和都非常景 仰。 賴副總統說,感動浩瀚無垠的宇 宙中、成千上萬發亮的星星裡,有來自台灣 的光芒,是一位仁醫盡心盡力照顧貧窮民 眾,在那樣辛苦的年代不忘為台灣民眾發 聲。他未來就任總統後,也將師法賴和照顧 弱勢、重視教育,並捍衛台灣民主、深化台 灣民主,讓台灣成為國際稱羨的國家、成為 世界民主 MVP。 賴和基金會與賴和家 屬今天贈送國立台灣文學館開發的「一桿秤 仔球棒」給賴副總統,期待他就任總統後, 持續以公義捍衛台灣。 【本文轉載自 2024-03-30/放言】

相關連結

<u>https://www.fountmedia.io/articl</u>
 <u>e/215969</u>

賴和小行星命名賴清德:效法「上醫醫 國」精神照顧弱勢捍衛台灣民主 發布日期:2024-04-01 新聞來源:太報

副總統、新任總統當選人賴清德今天 (3/30)上午出席「賴和小行星」(597966 Lai He)國際命名發表會,賴清德致詞時表 示,賴和妙手回春、視病如親,也是台灣文 學之父,「上醫醫國」,是醫界典範,賴清 德表示,自己在520上任後,將學習賴和的 精神,照顧弱勢民眾,重視教育文化,更重 要的是會捍衛台灣的民主,深化台灣的民 主,讓台灣社會能夠成為讓國際稱羨的國 家,也讓台灣成為世界民主的 MVP,我們一 起努力。

今年適逢台灣新文學之父賴和先生130年 冥誕,以及賴和文教基金會成立 30 年,由 彰化高中圖書館退休主任呂興忠與游大立老 師合作,向中央大學天文研究所申請,把編 號「597966」的小行星,以日治時期新文學 的賴和先生為名,最終經國際天文學聯合會 (IAU) 通遇,正式命名為「賴和(Lai He)」,期許透過小行星的命名,緬懷賴和 先生對台灣的卓越貢獻。 賴和文教金會 與國立中央大學於台灣文學基地,共同舉辦 「賴和小行星命名頒贈儀式」,副總統賴清 德受邀出席,並且與中央大學周景揚校長共 同致贈「賴和小行星銘版」給賴和家族五代 成員與基金會。同時,由於賴清德是棒球 迷,基金會與家屬也選擇台灣文學館開發的 「一桿秤仔」編號16號的紀念球棒,上面 還有「為義鬥爭」字樣,特別贈送給賴清 德,象徵祝賀賴清德將就任第16任總 統。 賴清德致詞時表示,總結來講,賴 和是醫界的典範,不僅妙手回春,同時視病 如親。賴和也是台灣文學之父,推動台灣文 學的發展,有非常顯著的貢獻,另外,賴和 也是民主運動的先驅,賴和與他的學弟,就 是台灣總督府學校的學弟蔣渭水,一起參加 台灣議會請願團,同時也成立台灣文化協

會,賴和可以說是「上醫醫國」,不僅直接 造福當地的民眾,其實也深深影響了國家, 所以台灣社對賴和是非常景仰的。 賴清 德表示,今天能夠受邀出席,非常榮幸,也 與有榮焉。特別要感謝中央大學周景揚校長 率領的團隊,很不容易找到小行星並且命 名,實在太了不起了,聽了之後很感動,也 沒有命名為周景揚,或者是命名其他人的名 字,而是想要尋找台灣具有代表性的人物, 能夠進入宇宙當中,這是非常令人欽佩的, 代表社會感謝周校長的團隊,非常感謝,不 僅非常專業,而且非常有心,想要讓台灣社 會跟國際社會能夠看見,這也是對台灣社會 莫大的鼓勵。 賴清德說,從此之後,自 己的心情也跟董事長、周校長的心情是一樣 的,在未來浩瀚無垠的宇宙當中,成千上萬 顆閃閃發亮的星星,有來自台灣的光芒,而 且這光芒可以清楚的感受到,一位好醫師, 一位仁醫,怎麼樣盡他的心力去照顧貧窮的 民眾,也因為一位辛苦的醫師,在那個殖民 的時代,不忘替人民發聲,也不忘去推動台 灣文化的發展。 賴清德表示,感謝賴和 基金會董事長的鼓勵,在520上任之後,也 會向賴和學習,不僅會照顧弱勢民眾,也會 重視教育文化,更重要的是會捍衛台灣的民 主,深化台灣的民主,讓台灣社會能夠成為 讓國際稱羨的國家,也讓台灣成為世界民主 的 MVP,我們一起努力。 【本文轉載自 2024-03-30/太報】

相關連結

 <u>https://www.taisounds.com/news/c</u> ontent/71/117296_

賴和小行星國際命名發表會 賴清德: 重視教育文化

發布日期:2024-04-01 新聞來源:owlNews 賴清德副總統 30 日上午出席「賴和小行 星」國際命名發表會時表示,「賴和小行 星」不僅是臺灣天文科學領域的重要貢獻, 也讓國際社會看見臺灣的光芒。未來他 520 就任總統之後,將學習賴和的精神,照顧弱 勢民眾,重視教育文化,捍衛並深化臺灣民 主,讓臺灣成為國際稱羨的文明國家。

賴清德表示,賴和是醫界的典範,不僅視 病如親,照顧弱勢民眾,同時也是臺灣新文 學之父,推動臺灣文學發展有非常大的貢 獻。此外,賴和是民主運動先驅,和蔣渭水 等人共同推動成立台灣文化協會,為弱勢族 群發聲,精神令人感佩。 賴清德感謝中 央大學、鹿林天文台等單位的努力與付出, 在浩瀚無垠的宇宙中,發現及命名「賴和小 行星」,這不僅是臺灣天文科學領域的重要 貢獻,也讓國際社會看見臺灣的光芒,未來 他 520 就任總統之後,將學習賴和的精 神,照顧弱勢民眾,重視教育文化,捍衛並 深化臺灣民主,讓臺灣成為國際稱羨的文明 國家,也讓臺灣成為世界民主的 MVP,我們 一起努力。 【本文轉載自 2024-03-30/ow1NEWs

相關連結

 <u>https://news.owlting.com/article</u> <u>s/652804</u>

臺文基地「賴和小行星」命名發表會 台灣人文價值閃耀星空

發布日期:2024-04-01 新聞來源:琅琅悅讀

舉頭仰望星空,「看見」臺灣新文學之父 ——賴和小行星(597966 Lai He),看顧 臺灣這一片土地。3月30日賴和文教基金 會與國立中央大學於台灣文學基地(簡稱臺 文基地)共同舉辦「賴和小行星頒贈儀 式」,特地邀請賴清德副總統見證,緬懷賴 和先生對台灣的卓越貢獻。今年適逢賴和先 生130年冥誕,亦是賴和文教基金會成立 30年,意義非凡!

賴和小行星(597966 Lai He)的命名, 緣自彰化高中圖書館退休主任呂興忠與游大 立老師合作,向中央大學天文研究所申請, 以日治時期台灣新文學的啟蒙者賴和先生為 名,最終經國際天文學聯合會(IAU) 通過, 正式命名為「賴和(Lai He)」,期許透過 小行星的命名,看見台灣更多可貴的人文價 值。 國立中央大學周景揚校長表示,從 2006年開始鹿林巡天計畫,不但曾發現台 灣史上的第一顆彗星,同時也發現了800多 顆小行星,使台灣成為亞洲發現小行星最活 躍的地方之一。卓越的天文研究成果,充份 展現台灣人以小搏大、努力不懈的精神。小 行星雖是科學研究,但命名以人文內涵為原 則,是為彰顯台灣價值與普世精神。 賴 和長孫賴悅顏,在1994年結合文學界、醫 界和學界成立賴和文教基金會,涵養青年認 同臺灣、付諸行動實踐,深化台灣民主,今 年正滿 30 年。基金會長期推廣高中台灣文 學教育、大學台灣文學系所成立等,培育青 年人才無數,也出版「賴和全集」。賴和長 孫賴悅顏表示賴和小行星的命名,代表後人 對賴和的感念,也是對基金會長期推廣台灣 文學、行動實踐的肯定。 頒贈儀式特地 邀請賴清德副總統出席,賴清德副總統與國 立中央大學周景揚校長共同致贈「賴和小行 星 (597966 Lai He) 銘版 | 給賴和家屬及 賴和基金會留念。 賴清德副總統致詞表 示,賴和是醫界典範,除妙手如春、視病如 親,對於推動台灣文學發展也有顯著貢獻, 更是民主運動先驅,曾與蔣渭水一起參加台 灣議會請願團、參與台灣文化協會成立,可 說是上醫醫國、造福民眾,更影響國家方 向,台灣社會對賴和都非常景仰。 賴副 總統特別提到,感動浩瀚無垠的宇宙中、成

千上萬發亮的星星裡,有來自台灣的光芒, 是一位仁醫盡心盡力照顧貧窮民眾,在那樣 辛苦的年代不忘為台灣民眾發聲。他未來就 任總統後,也將師法賴和照顧弱勢、重視教 育與文化,並捍衛台灣民主、深化台灣民 主,讓台灣成為國際稱羨的國家、成為世界 民主 MVP。 賴副總統為棒球迷,基金會 與家屬特地致贈國立台灣文學館藏品開發 「『一桿秤仔』球棒(標號第16號)給賴 副總統,祝福賴副總統新任總統後持續以公 義捍衛台灣。 賴和基金會董事長吳潮聰 說,賴和的作品是寫實主義和人道主義的結 合,作品中充满對社會底層小人物深切的關 心,關懷社會,體恤弱勢,反映台灣社會現 象,在台灣文壇有著不可抹滅的貢獻,影響 力更是無遠弗屆。賴和小行星獲得國際命名 通過,除彰顯其文學、文化成就獲肯定外, 更盼賴和精神,如星星光芒普照世人,傳遞 人文闢懷的精神。 賴和小行星,編號 597966,2008年1月12日由中央大學鹿林 天文台林啟生及美國馬里蘭大學的葉泉志博 士共同發現,大小約1.9公里。賴和小行星 繞行太陽一圈 3.61 年(軌道週期),離太 陽最近時(近日點)為2.9億公里,最遠時 (遠日點)為4.16億公里。 當世人舉頭 仰望賴和小行星,除了象徵賴和在天空,炯 炯不滅的光芒,且具垂視看顧台灣土地,並 在民主自由遭受內外挑戰的當代,陪伴台灣 人勇敢前進的時代意義。 【本文轉載自 2024-03-30/琅琅悦讀】

相關連結

 <u>https://reading.udn.com/read/amp</u> /story/122858/7866987

賴清德:就任後讓台灣成為國際稱羨的 國家

發布日期:2024-04-01 新聞來源: PChome 新聞 副總統賴清德今(30)日出席「賴和小行 星」國際命名發表會,致詞時表示,「賴和 小行星」不僅是台灣天文科學領域的重要貢 獻,也讓國際社會看見台灣的光芒,未來 520就任總統之後,將學習賴和的精神,照 顧弱勢民眾,重視教育文化,捍衛並深化台 灣民主,讓台灣成為國際稱羨的文明國家。

賴清德致詞時表示,賴和是醫界的典範, 不僅視病如親,照顧弱勢民眾,同時也是台 灣新文學之父,推動台灣文學發展有非常大 的貢獻。此外賴和是民主運動先驅,和蔣渭 水等人共同推動成立台灣文化協會,為弱勢 族群發聲,精神令人感佩。 賴清德感謝 中央大學、鹿林天文台等單位的努力與付 出,在浩瀚無垠的宇宙中,發現及命名「賴 和小行星」,這不僅是台灣天文科學領域的 重要貢獻,也讓國際社會看見臺灣的光 芒。 賴清德強調,未來 520 就任總統之 後,將學習賴和的精神,照顧弱勢民眾,重 視教育文化,捍衛並深化台灣民主,讓台灣 成為國際稱羨的文明國家,也讓台灣成為世 界民主的 MVP。 【本文轉載自 2024-03-30/PChome 新聞】

相關連結

 <u>https://news.m.pchome.com.tw/pol</u> itics/nownews/20240330/...

賴清德要學習賴和精神讓台灣成為國際 稱羨的文明國家

發布日期:2024-04-01 新聞來源:Newtalk 新聞

副總統、總統當選人賴清德今(30)日上 午出席「賴和小行星」國際命名發表會時表 示,「賴和小行星」不僅是台灣天文科學領 域的重要貢獻,也讓國際社會看見台灣的光 芒。他 520 就任總統之後,將學習賴和的精 神,照顧弱勢民眾,重視教育文化,捍衛並 深化台灣民主,讓台灣成為國際稱羨的文明 國家。

賴清德致詞時表示,賴和是醫界的典範, 不僅視病如親,照顧弱勢民眾,同時也是台 灣新文學之父,推動台灣文學發展有非常大 的貢獻。此外,賴和是民主運動先驅,和蔣 渭水等人共同推動成立台灣文化協會,為弱 勢族群發聲,精神令人感佩。 賴清德感 谢中央大學、鹿林天文台等單位的努力與付 出,在浩瀚無垠的宇宙中,發現及命名「賴 和小行星」,這不僅是台灣天文科學領域的 重要貢獻,也讓國際社會看見台灣的光 芒。 賴清德強調,未來他 520 就任總統 之後,將學習賴和的精神,照顧弱勢民眾, 重視教育文化,捍衛並深化台灣民主,讓台 灣成為國際稱羨的文明國家,也讓台灣成為 世界民主的 MVP。 包括賴和基金會創辦 人賴悅顏、董事長吳潮聰、國立中央大學校 長周景揚及國立台灣文學館館長林巾力等也 都出席活動。 原文網址: 賴清德要學習賴 和精神 讓台灣成為國際稱羨的文明國 家 【本文轉載自 2024-03-30/Newtalk 新聞】

相關連結

<u>https://newtalk.tw/news/view/202</u>
 <u>4-03-30/914216</u>

賴和小行星彰顯台灣價值與普世精神 緬懷賴和對臺灣的卓越貢獻

發布日期:2024-04-01 新聞來源: 立報傳媒

舉頭仰望星空,看見臺灣新文學之父賴和 (597966 Lai He)小行星,看顧臺灣這一 片土地。3月30日賴和文教基金會與國立 中央大學於臺灣文學基地共同舉辦「賴和小 行星頒贈儀式」,緬懷賴和先生對臺灣的卓 越貢獻。今年適逢賴和先生130年冥誕,亦 是賴和文教基金會成立30年,意義非凡!

賴和小行星的命名,緣自彰化高中圖書館 退休主任吕興忠與游大立老師合作,向中央 大學天文研究所申請,以日治時期新文學的 啟蒙者賴和先生為名,最終經國際天文學聯 合會(IAU) 通過,正式命名為「賴和 (597966 Lai He), 期許透過小行星的 命名,看見臺灣更多可貴的人文價 值。 副總統賴清德致詞時表示,賴和仁 心仁術,是醫界典範;推動臺灣文學發展, 是臺灣新文學之父;也是臺灣民主運動之先 驅。他的一生不僅照拂當地民眾,也深深影 響國家,希望未來自己能夠向賴和學習,不 僅照顧臺灣民眾,也重視教育文化,更要深 化臺灣民主,讓臺灣成為世界民主的 MVP。 國立中央大學周景揚校長指出,從 2006年開始鹿林巡天計畫,不但曾發現台 灣史上的第一顆彗星,同時也發現了800多 顆小行星,使台灣成為亞洲發現小行星最活 躍的地方之一。卓越的天文研究成果,充份 展現台灣人以小搏大、努力不懈的精神。小 行星雖是科學研究,但命名以人文內涵為原 則,是為彰顯台灣價值與普世精神。 賴 和基金會董事長吳潮聰說,賴和的作品是寫 實主義和人道主義的結合,作品中充滿對社 會底層小人物深切的關心,關懷社會,體恤 弱勢,反映台灣社會現象,在台灣文壇有著 不可抹滅的貢獻,影響力更是無遠弗屆。賴 和小行星獲得國際命名通過,除彰顯其文 學、文化成就獲肯定外,更盼賴和精神,如 星星光芒普照世人,傳遞人文關懷的精 神。 賴副總統與國立中央大學周景揚校 長共同致贈「賴和小行星銘版」給賴和家屬 及賴和基金會留念;同時因賴副總統為棒球 迷,基金會與家屬特地選擇臺灣文學館藏品 開發「『一桿秤仔』球棒」贈送賴副總統, 球棒上刻有編號16,祝福第16任總統就任

後,持續以公義捍衛臺灣。 賴和小行 星,編號597966,2008年1月12日由中央 大學應林天文台林啟生及美國馬里蘭大學的 葉泉志博士共同發現,大小約1.9公里。賴 和小行星繞行太陽一圈3.61年(軌道週 期),離太陽最近時(近日點)為2.9億公 里,最遠時(遠日點)為4.16億公 里。 當世人舉頭仰望賴和小行星,除了 象徵賴和在天空,炯炯不滅的光芒,且具垂 視看顧臺灣土地,並在民主自由遭受內外挑 戰的當代,陪伴臺灣人勇敢前進的時代意 義。 【本文轉載自2024-03-30/立報傳

媒】

相關連結

• <u>https://www.limedia.tw/edu/48941</u>
/

賴和小行星國際命名發表會 賴清德: 重視教育文化

發布日期:2024-04-01 新聞來源:蕃薯藤

賴清德副總統30日上午出席「賴和小行 星」國際命名發表會時表示,「賴和小行 星」不僅是臺灣天文科學領域的重要貢獻, 也讓國際社會看見臺灣的光芒。未來他520 就任總統之後,將學習賴和的精神,照顧弱 勢民眾,重視教育文化,捍衛並深化臺灣民 主,讓臺灣成為國際稱羨的文明國家。

賴清德表示,賴和是醫界的典範,不僅視 病如親,照顧弱勢民眾,同時也是臺灣新文 學之父,推動臺灣文學發展有非常大的貢 獻。此外,賴和是民主運動先驅,和蔣渭水 等人共同推動成立台灣文化協會,為弱勢族 群發聲,精神令人感佩。 賴清德感謝中 央大學、鹿林天文台等單位的努力與付出, 在浩瀚無垠的宇宙中,發現及命名「賴和小 行星」,這不僅是臺灣天文科學領域的重要 貢獻,也讓國際社會看見臺灣的光芒,未來 他520就任總統之後,將學習賴和的精神, 照顧弱勢民眾,重視教育文化,捍衛並深化 臺灣民主,讓臺灣成為國際稱羨的文明國 家,也讓臺灣成為世界民主的 MVP,我們一 起努力。 【本文轉載自 2024-03-30/蕃 薯藤】

相關連結

 <u>https://n.yam.com/Article/202403</u> 31465719#google_vignette

「賴和小行星」國際命名發表會賴副總 統:學習賴和精神深化臺灣民主

發布日期:2024-04-01 新聞來源:青年日報

副總統賴清德今(30)日上午出席「賴和 小行星」國際命名發表會時表示,「賴和小 行星」不僅是臺灣天文科學領域的重要貢 獻,也讓國際社會看見臺灣的光芒。未來他 520就任總統之後,將學習賴和的精神,照 顧弱勢民眾,重視教育文化,捍衛並深化臺 灣民主,讓臺灣成為國際稱羨的文明國家。

賴副總統今日在臺灣文學基地出席「賴和小行星」國際命名發表會。 賴副總統表示,賴和是醫界的典範,不僅視病如親,照顧弱勢民眾,同時也是臺灣新文學之父,推動臺灣文學發展有非常大的貢獻。此外,賴和是民主運動先驅,和蔣渭水等人共同推動成立臺灣文化協會,為弱勢族群發聲,精神令人感佩。 賴副總統感謝中央大學、應林天文臺等單位的努力與付出, 在浩瀚無垠的宇宙中,發現及命名「賴和小行星」,這不僅是臺灣天文科學領域的重要貢獻,也讓國際社會看見臺灣的光芒。 賴副總統強調,未來他520就任 總統之後,將學習賴和的精神,照顧弱勢民 眾,重視教育文化,捍衛並深化臺灣民主, 讓臺灣成為國際稱羨的文明國家,也讓臺灣 成為世界民主的 MVP。 【本文轉載自 2024-03-30/青年日報】

相關連結

 <u>https://www.ydn.com.tw/news/news</u> InsidePage?chapterID=1663943

賴和小行星獲國際命名賴副總統:感動 宇宙光芒來自台灣

發布日期:2024-04-01 新聞來源:中央廣播電台

國際天文學聯合會(IAU)最近通過,正式命 名編號 597966 小行星為「賴和(Lai He)」,賴和基金會今天(30日)舉辦「賴和 小行星」國際發表會,緬懷賴和對台灣的卓 越貢獻。受邀出席的副總統賴清德表示,他 很感動在浩瀚無垠的宇宙中,有光芒來自台 灣,他承諾未來就任總統後,將學習賴和照 顧弱勢、重視教育的精神,捍衛台灣民主, 讓台灣成為世界民主的 MVP。

編號 597966 小行星,為 2008 年 1 月 12 日由中央大學天文研究所鹿林天文台林啟生 及美國馬里蘭大學博士葉泉志共同發現,隨 後彰化高中圖書館退休老師呂興忠與游大立 合作,向中央大學天文研究所申請,以日治 時期台灣新文學的啟蒙者賴和為名,近日經 國際天文學聯合會通過,正式命名為「賴和 (Lai He)」,讓國際認識台灣可貴的人文。 賴和基金會與中央大學 30 日在台灣文學基 地舉辦「賴和小行星」國際命名發表會,並 進行「賴和小行星」國際命名發表會,並 進行「賴和小行星」國際命名發表會,並 進行「賴和小行星」國際命名發表會,並 進行「賴和小行星」國際命名發表會,並 星」獲得國際命名通過,除了彰顯其文學、 文化成就獲得肯定外,更期盼賴和的精神, 有如星星的光芒普照世人, 傳遞人文關懷的 精神。 頒贈儀式上也特別邀請副總統賴 清德出席。賴副總統表示,賴和是醫界典 範,除妙手如春、視病如親,對於推動台灣 文學發展也有顯著貢獻,更是民主運動先 驅,台灣社會對賴和都非常景仰。 賴副 總統說,他很感動浩瀚無垠的宇宙中,成千 上萬發亮的星星裡,有來自台灣的仁醫的光 芒,他未來就任總統後,一定會效法賴和的 精神。賴副總統說: 『(原音)我 520 上任之 後,我也會向賴和學習,不僅僅會照顧弱勢 的民眾,我也會重視教育文化,我也會捍 衛、深化台灣的民主,讓台灣社會成為國際 稱羨的民主國家,也讓台灣成為世界民主的 MVP。』 隨後賴副總統也與中央大學校長 周景揚共同致贈「賴和小行星銘版」給賴和 的家屬及賴和基金會留念;另外,賴和基金 會與賴和家屬也特別贈送國立台灣文學館開 發的「一桿秤仔」球棒給棒球迷賴副總統, 上頭並刻有限定版 16 的編號, 期待第 16 任 總統就任後,能持續以公義捍衛台 灣。 【本文轉載自 2024-03-30/中央廣 播電台】

相關連結

 <u>https://www.rti.org.tw/news/view</u> /id/2200726

彰顯文學成就小行星以賴和命名

發布日期:2024-04-01 新聞來源:人間福報

賴和文教基金會與國立中央大學上午舉行 「賴和小行星」國際命名發表會,賴和小行 星(597966Lai He)以日治時期台灣文學家 賴和為名,後經國際天文學聯合會通過,該 小行星被命名為「賴和」,今年也適逢賴和 130周年冥誕。

中央大學校長周景揚指出,從2006年開 始鹿林巡天計畫,不但曾發現台灣史上的第 一顆彗星,同時也發現了800多顆小行星, 使台灣成為亞洲發現小行星最活躍的地方之 一。卓越的天文研究成果,充份展現台灣人 以小搏大、努力不懈的精神。小行星雖是科 學研究,但命名以人文內涵為原則,是為彰 顯台灣價值與普世精神。 賴和基金會董 事長吳潮聰說,賴和的作品是寫實主義和人 道主義的結合,作品中充满對社會底層小人 物深切的關心,關懷社會,體恤弱勢,反映 台灣社會現象,在台灣文壇有著不可抹滅的 貢獻,影響力更是無遠弗屆。賴和小行星獲 得國際命名通過,除彰顯其文學、文化成就 獲肯定外,更盼賴和精神,如星星光芒普照 世人,傳遞人文關懷的精神。 賴和小行 星,編號 597966,2008 年1月12日由中央 大學鹿林天文台林啟生及美國馬里蘭大學的 葉泉志博士共同發現,大小約1.9公里。賴 和小行星繞行太陽一圈 3.61 年 (軌道周 期),離太陽最近時(近日點)為2.9億公 里,最遠時(遠日點)為4.16億公 里。 後由彰化高中圖書館退休主任呂興

忠與教師游大立合作,向中央大學天文研究 所申請,以日治時期台灣新文學的啟蒙者賴 和為名,國際天文學聯合會近日正式通過, 將小行星命名為「賴和(Lai

He)」。 【本文轉載自 2024-03-30/人 間福報】

相關連結

 <u>https://www.merit-</u> <u>times.com/newslistdetail_tw_1.ph</u> p?id=43679_

小行星命名賴和賴:光芒來自台灣

發布日期:2024-04-01 新聞來源:中華新聞網

國際天文學聯合會(IAU)近日正式通 過,將一顆有編號的小行星命名為「賴 和」。副總統賴清德三十日說,感動宇宙有 光芒來自台灣,未來將師法賴和照顧弱勢、 重視教育,捍衛台灣民主。

今年是賴和一百三十年冥誕,賴和文教基 金會與國立中央大學三十日在台灣文學基地 舉辦「賴和小行星」國際命名發表會,緬懷 台灣新文學之父賴和對台灣的貢獻。賴清 德、國立中央大學校長周景揚、賴和文教基 金會董事長吳潮聰、賴和長孫賴悅顏等人出 席。 賴和小行星的由來,原來是中央大 學天文研究所鹿林天文台林啟生及美國馬里 蘭大學博士葉泉志,在此前共同發現並予編 號的小行星,而後彰化高中圖書館退休主任 吕興忠與教師游大立合作,向中央大學天文 研究所申請,以日治時期台灣新文學的啟蒙 者賴和為名,國際天文學聯合會近日正式通 過,將小行星命名為「賴和」。 【本文 轉載自 2024-03-30/中華新聞雲】

相關連結

小行星獲命名賴和賴清德感動宇宙光芒 來自台灣

發布日期:2024-04-01 新聞來源: 華視新聞網

國際天文學聯合會(IAU)近日正式通過, 將編號 597966 的小行星命名為「賴和(Lai He)」。副總統賴清德說,感動宇宙有光芒 來自台灣,未來將師法賴和照顧弱勢、重視 教育,捍衛台灣民主。 今年是賴和130年冥誕,賴和文教基金會 與國立中央大學今天在台灣文學基地舉辦 「賴和小行星」國際命名發表會,緬懷台灣 新文學之父賴和對台灣的貢獻。副總統、國 立中央大學校長周景揚、賴和文教基金會董 事長吳潮聰、賴和長孫賴悅顏等人出

席。 賴和(Lai He)小行星的由來,原 來是中央大學天文研究所鹿林天文台林啟生 及美國馬里蘭大學博士葉泉志,在2008年 1月12日共同發現編號597966小行星,而 後彰化高中圖書館退休主任呂興忠與教師游 大立合作,向中央大學天文研究所申請,以 日治時期台灣新文學的啟蒙者賴和為名,國 際天文學聯合會近日正式通過,將小行星命 名為「賴和(Lai He)」。 副總統致詞 表示,賴和是醫界典範,除妙手如春、視病 如親,對於推動台灣文學發展也有顯著貢 獻,更是民主運動先驅,曾與蔣渭水一起參 加台灣議會請願團、參與台灣文化協會成 立,可說是上醫醫國、造福民眾,更影響國 家方向,台灣社會對賴和都非常景 仰。 賴副總統說,感動浩瀚無垠的宇宙 中、成千上萬發亮的星星裡,有來自台灣的 光芒,是一位仁醫盡心盡力照顧貧窮民眾, 在那樣辛苦的年代不忘為台灣民眾發聲。他 未來就任總統後,也將師法賴和照顧弱勢、 重視教育,並捍衛台灣民主、深化台灣民 主,讓台灣成為國際稱羨的國家、成為世界 民主 MVP。 賴和基金會與賴和家屬今天 贈送國立台灣文學館開發的「一桿秤仔球 棒」給賴副總統,期待他就任總統後,持續 以公義捍衛台灣。 【本文轉載自 2024-03-30/華視新聞網】

相關連結

• <u>https://news.cts.com.tw/cna/poli</u> <u>tics/202403/20240330230...</u>

【藝術文化】賴和小行星命名發表會賴 清德:讓台灣成為世界民主的 MVP 發布日期:2024-04-01 新聞來源:自由時報

賴和文教基金會與國立中央大學共同主辦 「賴和小行星國際命名」發表會暨頒贈儀 式,昨(30)日在台灣文學基地舉行記者 會,緬懷台灣新文學之父賴和對台灣文學的 卓著貢獻。副總統賴清德出席典禮,與中央 大學校長周景揚共同致贈「賴和小行星 (597966 Lai He)銘版」給賴和家屬及賴 和基金會留念,同時,基金會與家屬特地選 擇台文館開發的「『一桿秤仔』球棒」贈送 賴副總統,祝福賴副總統履任總統後,持續 以公義捍衛台灣。

副總統賴清德致詞時表示,賴和是醫界 典範,視民如親;也是台灣新文學之父,對 推動台灣文學發展有顯著貢獻;更是民族運 動先驅,跟他的學弟蔣渭水一起參加台灣議 會設置請願運動,並成立台灣文化協會。 「賴和一生不僅照拂當地民眾也深深影響台 灣,等我 520 上任之後,也會向賴和學習, 不僅照顧弱勢民眾,也會重視教育文化,更 重要的是會捍衛台灣民主,深化台灣民主, 讓台灣社會成為國際稱羨的文明國家,也讓 台灣成為世界民主的 MVP。」 國立中央 大學校長周景揚提及,自2006年起,鹿林 巡天計畫發現台灣史上第1顆彗星,同時也 發現800多顆小行星,使台灣成為亞洲發現 小行星最活躍的地方,「小行星雖是科學領 域,但是以人文內涵命名,更能彰顯台灣價 值與普世精神。」 賴和基金會董事長吳 潮聰說明,賴和可以說是人道主義跟寫實主 義的結合,不只關注社會人的心聲,也對舊 社會體制批判,還是台灣第1位用台灣白話 文創作的作家,他白天是醫生,晚上寫作, 為窮苦人家免費看病,被彰化人稱為『彰化 的媽祖』,希望『賴和小行星』也能普照世 人。」 「勇士當為義鬥爭」是「台灣新 文學之父」賴和的著名詩句,表現他為追求 公理與正義而奮鬥的精神。如今,當世人仰 望星空,除了能看到象徵賴和炯炯不滅的光 芒,同時也具有台灣人為了民主自由奮力前 進的時代意義。 【本文轉載自 2024-03-30/自由時報】

相關連結

 <u>https://art.ltn.com.tw/article/p</u> aper/1638356_

小行星獲命名賴和賴清德感動宇宙光芒 來自台灣

發布日期:2024-04-01 新聞來源:聯合新聞網

國際天文學聯合會(IAU)近日正式通過, 將編號 597966 的小行星命名為「賴和(Lai He)」。副總統賴清德說,感動宇宙有光芒 來自台灣,未來將師法賴和照顧弱勢、重視 教育,捍衛台灣民主。

今年是賴和130年冥誕,賴和文教基金會 與國立中央大學今天在台灣文學基地舉辦 「賴和小行星」國際命名發表會,緬懷台灣 新文學之父賴和對台灣的貢獻。副總統、國 立中央大學校長周景揚、賴和文教基金會董 事長吳潮聰、賴和長孫賴悅顏等人出 席。 賴和(Lai He)小行星的由來,原 來是中央大學天文研究所鹿林天文台林啟生 及美國馬里蘭大學博士葉泉志,在2008年 1月12日共同發現編號597966小行星,而 後彰化高中圖書館退休主任呂興忠與教師游 大立合作,向中央大學天文研究所申請,以 日治時期台灣新文學的啟蒙者賴和為名,國 際天文學聯合會近日正式通過,將小行星命 名為「賴和(Lai He)」。 副總統致詞 表示,賴和是醫界典範,除妙手如春、視病 如親,對於推動台灣文學發展也有顯著貢

獻,更是民主運動先驅,曾與蔣渭水一起參

加台灣議會請願團、參與台灣文化協會成 立,可說是上醫醫國、造福民眾,更影響國
 家方向,台灣社會對賴和都非常景 仰。 賴副總統說,感動浩瀚無垠的宇宙 中、成千上萬發亮的星星裡,有來自台灣的 光芒,是一位仁醫盡心盡力照顧貧窮民眾, 在那樣辛苦的年代不忘為台灣民眾發聲。他 未來就任總統後,也將師法賴和照顧弱勢、 重視教育,並捍衛台灣民主、深化台灣民 主,讓台灣成為國際稱羨的國家、成為世界 民主 MVP。 賴和基金會與賴和家屬今天 贈送國立台灣文學館開發的「一桿秤仔球 棒」給賴副總統,期待他就任總統後,持續 以公義捍衛台灣。 【本文轉載自 2024-03-30/聯合新聞網】

相關連結

• <u>https://udn.com/news/story/7314/</u> 7866442

賴和130周年冥誕小行星獲命名賴和

發布日期:2024-04-01 新聞來源:聯合新聞網

賴和文教基金會與國立中央大學上午舉行 「賴和小行星」國際命名發表會,賴和小行 星(597966Lai He)為彰化高中圖書館退休 主任呂忠興與教師游大立合作發現,並向中 央大學天文研究所申請,以日治時期台灣文 學家賴和為名,後經國際天文學聯合會通 過,該小行星被命名為「賴和」。今年也適 逢賴和130周年冥誕。

賴和長孫賴悅顏表示,該小行星命名,也 代表後世對賴和的感念,副總統賴清德除讚 賞賴和在日治時期對抗殖民的行動,也稱讚 賴和是仁醫,並對於推動台灣文學發展也有 顯著貢獻。 【本文轉載自 2024-03-30/ 聯合新聞網】

相關連結

 <u>https://udn.com/news/story/6885/</u> 7866463

臺文基地「賴和小行星」命名發表會 台灣人文價值閃耀星空

發布日期:2024-04-01 新聞來源:聯合新聞網

舉頭仰望星空,「看見」臺灣新文學之父 ——賴和小行星(597966 Lai He),看顧 臺灣這一片土地。3月30日賴和文教基金 會與國立中央大學於台灣文學基地(簡稱臺 文基地)共同舉辦「賴和小行星頒贈儀 式」,特地邀請賴清德副總統見證,緬懷賴 和先生對台灣的卓越貢獻。今年適逢賴和先 生130年冥誕,亦是賴和文教基金會成立 30年,意義非凡!

賴和小行星(597966 Lai He)的命名, 緣自彰化高中圖書館退休主任呂興忠與游大 立老師合作,向中央大學天文研究所申請, 以日治時期台灣新文學的啟蒙者賴和先生為 名,最終經國際天文學聯合會(IAU) 通過, 正式命名為「賴和(Lai He)」,期許透過 小行星的命名,看見台灣更多可貴的人文價 國立中央大學周景揚校長表示,從 值。 2006年開始鹿林巡天計畫,不但曾發現台 灣史上的第一顆彗星,同時也發現了800多 顆小行星,使台灣成為亞洲發現小行星最活 躍的地方之一。卓越的天文研究成果,充份 展現台灣人以小搏大、努力不懈的精神。小 行星雖是科學研究,但命名以人文內涵為原 則,是為彰顯台灣價值與普世精神。 轁 和長孫賴悅顏,在1994年結合文學界、醫 界和學界成立賴和文教基金會,涵養青年認 同臺灣、付諸行動實踐,深化台灣民主,今 年正满 30 年。基金會長期推廣高中台灣文 學教育、大學台灣文學系所成立等,培育青

年人才無數,也出版「賴和全集」。賴和長 孫賴悅顏表示賴和小行星的命名,代表後人 對賴和的感念,也是對基金會長期推廣台灣 文學、行動實踐的肯定。 頒贈儀式特地 邀請賴清德副總統出席,賴清德副總統與國 立中央大學周景揚校長共同致贈「賴和小行 星 (597966 Lai He) 銘版 | 給賴和家屬及 賴和基金會留念。 賴清德副總統致詞表 示,賴和是醫界典範,除妙手如春、視病如
 親,對於推動台灣文學發展也有顯著貢獻, 更是民主運動先驅,曾與蔣渭水一起參加台 灣議會請願團、參與台灣文化協會成立,可 說是上醫醫國、造福民眾,更影響國家方 向,台灣社會對賴和都非常景仰。 賴副 總統特別提到, 感動浩瀚無垠的宇宙中、成 千上萬發亮的星星裡,有來自台灣的光芒, 是一位仁醫盡心盡力照顧貧窮民眾,在那樣 辛苦的年代不忘為台灣民眾發聲。他未來就 任總統後,也將師法賴和照顧弱勢、重視教 育與文化,並捍衛台灣民主、深化台灣民 主,讓台灣成為國際稱羨的國家、成為世界 民主 MVP。 賴副總統為棒球迷,基金會 與家屬特地致贈國立台灣文學館藏品開發 「『一桿秤仔』球棒(標號第16號)給賴 副總統,祝福賴副總統新任總統後持續以公 義捍衛台灣。 賴和基金會董事長吳潮聰 說,賴和的作品是寫實主義和人道主義的結 合,作品中充满對社會底層小人物深切的關 心,關懷社會,體恤弱勢,反映台灣社會現 象,在台灣文壇有著不可抹滅的貢獻,影響 力更是無遠弗屆。賴和小行星獲得國際命名 通過,除彰顯其文學、文化成就獲肯定外, 更盼賴和精神,如星星光芒普照世人,傳遞 人文關懷的精神。 賴和小行星,編號 597966,2008年1月12日由中央大學鹿林 天文台林啟生及美國馬里蘭大學的葉泉志博 士共同發現,大小約1.9公里。賴和小行星 繞行太陽一圈 3.61 年(軌道週期),離太 陽最近時(近日點)為2.9億公里,最遠時 (遠日點)為4.16億公里。 當世人舉頭 仰望賴和小行星,除了象徵賴和在天空,炯 炯不滅的光芒,且具垂視看顧台灣土地,並 在民主自由遭受內外挑戰的當代,陪伴台灣 人勇敢前進的時代意義。 【本文轉 載自 2024-03-30/聯合新聞網】

相關連結

 <u>https://reading.udn.com/read/sto</u> ry/122858/7866987_

小行星獲命名「賴和」!賴清德:宇宙 有光芒來自台灣

發布日期:2024-04-01 新聞來源:壹新聞

國際天文學聯合會最近通過,正式命名編 號 597966 小行星為「賴和」,也就是台灣 新文學之父賴和的名字。今(30)日賴和基 金會舉辦發表會,緬懷他對台灣的卓越貢 獻。受邀出席的準總統賴清德說,未來他就 任總統後,將學習賴和精神,捍衛台灣民 主,讓台灣成為世界民主的 MVP!

【本文轉載自 2024-03-30/壹新聞】

相關連結

• <u>https://www.nexttv.com.tw/NextTV</u> /News/Home/LatestNews/2...

紀念台灣新文學之父小行星命名賴和

發布日期:2024-04-01 新聞來源:大愛電視台 中央大學天文研究所、鹿林天文台,攜手美 國馬里蘭大學,於2008年1月12日,共同 發現編號「597966小行星」,經過國際天 文學聯合通過。為了緬懷臺灣新文學之父 「賴和」,今天賴和文教基金會與中央大 學,在臺灣文學基地舉辦「賴和小行星」國 際命名發表會。 【本文轉載自 2024-03-30/大愛電視台】

相關連結

<u>https://www.daai.tv/search?q=%E8</u>
 <u>%B3%B4%E5%92%8C&tar...</u>

小行星獲命名「賴和」!賴清德:宇宙 有光芒來自台灣

發布日期:2024-04-01 新聞來源:年代新聞

國際天文學聯合會最近通過,正式命名編 號 597966小行星為「賴和」,也就是台灣 新文學之父賴和的名字。今(30)日賴和基 金會舉辦發表會,緬懷他對台灣的卓越貢 獻。受邀出席的準總統賴清德說,未來他就 任總統後,將學習賴和精神,捍衛台灣民 主,讓台灣成為世界民主的 MVP!

【本文轉載自 2024-03-30/年代新聞】

相關連結

 <u>https://www.eracom.com.tw/EraNew</u> s/Home/political/2024-0...

中央大學發現小行星命名賴和盼其人文 關懷精神普照世人

發布日期:2024-04-01 新聞來源:公視新聞網

2008年1月,由中央大學鹿林天文台與美國美里蘭大學教授,共同發現一顆1.9公里的小行星,編號597966,繞行太陽1圈3.61年,離太陽最近2.9億公里。

今年適逢台灣新文學之父賴和130年冥 誕,上午賴和文教基金會與中央大學共同舉 辦頒贈儀式,將這顆小行星命名為「賴 和」。 賴和文教基金會董事呂興忠提 及,「他一生追求自由平等、一生追求公平 正義,今年的2月在國際天文聯合會國際期 刊通過了這個賴和的命名。」 頒贈儀式 選在台灣文學基地舉辦,賴和的後代子孫也 與會共襄盛舉,賴和的作品被認為充滿對社 會底層小人物的關心,批判舊社會體制,結 合寫實與人道主義。 中央大學也表示, 小行星雖然是科學研究,但命名以人文內涵 為原則。 中央大學校長周景揚說道, 「我們也希望賴和小行星在天上普照世人,

我们也希望模称小们 生在八上盲 然 世代 能夠傳遞人文關懷的這個精神。」 中央 大學從 2006 年開始鹿林巡天計畫, 曾發現 台灣史上的第1 顆彗星, 也找到 800 多顆小 行星, 陸續完成命名 50 多個, 命名的對象 除了對台灣有貢獻的人名, 也有以各縣市、 原住民族名來命名。 【本文轉載自 2024-03-30/公視新聞網】

相關連結

 <u>https://news.pts.org.tw/article/</u> <u>687944</u>

賴清德:就任後讓台灣成為國際稱羨的 國家

發布日期:2024-04-01 新聞來源:Yahoo!新聞

副總統賴清德今(30)日出席「賴和小行 星」國際命名發表會,致詞時表示,「賴和 小行星」不僅是台灣天文科學領域的重要貢 獻,也讓國際社會看見台灣的光芒,未來 520就任總統之後,將學習賴和的精神,照 顧弱勢民眾,重視教育文化,捍衛並深化台 灣民主,讓台灣成為國際稱羨的文明國家。

賴清德致詞時表示,賴和是醫界的典範, 不僅視病如親,照顧弱勢民眾,同時也是台 灣新文學之父,推動台灣文學發展有非常大 的貢獻。此外賴和是民主運動先驅,和蔣渭 水等人共同推動成立台灣文化協會,為弱勢 族群發聲,精神令人感佩。 賴清德感謝 中央大學、鹿林天文台等單位的努力與付 出,在浩瀚無垠的宇宙中,發現及命名「賴 和小行星」,這不僅是台灣天文科學領域的 重要貢獻,也讓國際社會看見臺灣的光 芒。 賴清德強調,未來520就任總統之 後,將學習賴和的精神,照顧弱勢民眾,重 視教育文化,捍衛並深化台灣民主,讓台灣 成為國際稱羨的文明國家,也讓台灣成為世 界民主的 MVP。 【本文轉載自 2024-03-30/Yahoo!新聞】

相關連結

<u>https://tw.news.yahoo.com/%E8%B3</u>
 %B4%E6%B8%85%E5%BE%B7-%...

小行星命名「賴和」 賴清德:感動宇 宙光芒來自台灣!

發布日期:2024-04-01 新聞來源:民視新聞網

國際天文學聯合會近日正式通過,將編號 597966的小行星命名為"賴和"。今天賴和 賴和基金會和中央大學共同舉辦賴和小行星 國際命名發表會,副總統賴清德受邀出席, 更強調,感動宇宙有光芒來自台灣,未來將 學習賴和精神,照顧弱勢和捍衛台灣民主。

主持人:「這個編號剛好在第16號,也 剛好是賴總統第16任。」 知道準總統賴 清德是資深棒球迷,特別將台灣文學館藏品 開發的球棒,贈送給賴清德。上頭還寫著 16號,正好代表著賴清德是第16任總統。 今年適逢賴和130年冥誕,更是基金會30 周年賴和基金會和中央大學共同舉辦賴和小 行星國際命名發表會,準總統賴清德也特別 出席,更是有感而發。 準總統賴清德:

「成千上萬閃閃發亮的星星,有來自台灣的 光芒,而且這個光芒我們可以清楚感受到, 一位好醫師,一位仁醫怎麼樣盡他的心力, 照顧貧窮的民眾。」 賴和小行星編號 597966,由中央大學發現,經過國際天文學 聯合會通過,正式命名為賴和小行星,期許 透過命名,讓更多人看見台灣可貴的人文價 值。 準總統賴清德:「我 520 上任後我也 會向賴和學習,不僅會照顧弱勢民眾,也會 重視教育文化,最重要是會捍衛台灣民主, 深化台灣民主,讓台灣社會能夠成為,國際 稱羨文明的國家,也讓台灣成為世界民主 MVP。」 但賴清德 520 上任在即,各界關 注內閣動態,外傳總統府秘書長林佳龍、文 化部前部長鄭麗君與民進黨前主席卓榮泰, 都有望接任閣揆。先前卓榮泰出席同鄉會餐 **敘時,不少人拱喊卓院長,再加上卓榮泰和** 賴清德有深厚的互信基礎,卓榮泰接任閣揆 有跡可循。 準總統賴清德: 「賴副閣揆 人選確定會是卓榮泰嗎,昨天遇到邱部長, 有跟他聊什麼嗎。」 賴清德笑笑沒有回 應。但按照往例,閣揆人選最快三月就會出 爐,但都快四月了依舊沒有答案,府院黨人 事眾說紛紜,首任閣揆該如何穩定政局,也 成為賴清德挑選最大關鍵。 【本文轉載 自 2024-03-30/民視新聞網】

相關連結

 <u>https://www.ftvnews.com.tw/news/</u> detai1/2024330P02M1_

小行星命名"賴和"賴清德:感動宇宙光 芒來自台灣!

發布日期:2024-04-01 新聞來源:Yahoo!新聞

國際天文學聯合會近日正式通過,將編號 597966的小行星命名為"賴和"。今天賴和 賴和基金會和中央大學共同舉辦賴和小行星 國際命名發表會,副總統賴清德受邀出席, 更強調,感動宇宙有光芒來自台灣,未來將 學習賴和精神,照顧弱勢和捍衛台灣民主。

【本文轉載自 2024-03-30/Yahoo!新聞】

相關連結

<u>https://tw.news.yahoo.com/%E5%B0</u>
 %8F%E8%A1%8C%E6%98%9F%E...

小行星獲命名民主先驅「賴和」賴清 德:520上任後會向其學習

發布日期:2024-04-01 新聞來源:Microsoftstart

國際天文學聯合會(IAU)近日正式通過, 將編號 597966 的小行星命名為「賴和(Lai He)」,副總統賴清德說,賴和是醫界典 範,除妙手如春、視病如親,對於推動台灣 文學發展也有顯著貢獻,更是民主運動先 驅;他也說,520上任後,他也會向賴和學 習,不僅照顧弱勢民眾也會重視教育文化, 還深化台灣的民主,讓台灣社會成為台灣社 會稱羨的國家。

賴和小行星的由來,是由中央大學天文 研究所鹿林天文台林啟生及美國馬里蘭大學 博士葉泉志,在2008年1月12日共同發現 編號 597966 小行星,而後彰化高中圖書館 退休主任吕興忠與教師游大立合作,向中央 大學天文研究所申請,以日治時期台灣新文 學的啟蒙者賴和為名,國際天文學聯合會近 日正式通過,將小行星命名為「賴 賴和基金會與賴和家屬今天贈 和」。 送國立台灣文學館開發的「賴和一桿秤仔球 棒」給賴副總統,這個編號是16號,剛好 賴總統也是第16任當選,期待他就任總統 後,持續以公義捍衛台灣。 賴清德表 示,賴和是民主運動的先驅,他跟蔣渭水一 起參加台灣議會請願團,也成立台灣文化協

會,賴和一生不僅造福當地的民眾,也深深 影響國家,台灣社會對賴和很景

仰。 賴清德說,在浩瀚無垠的宇宙當 中,為賴和命名聽了就很感動,這是令人欽 佩的,不僅專業而且非常有心,讓台灣國際 社會看的見,這也是莫大的鼓勵;520上任 後,他也會向賴和學習,不僅照顧弱勢民眾 也會重視教育文化,還深化台灣的民主,讓 台灣社會成為台灣社會稱羨的國

家。 【本文轉載自 2024-03-30/Microsoft start】

相關連結

<u>https://www.msn.com/zh-</u>
 <u>tw/news/national/%E5%B0%8F%E8%A1</u>
 ...

出席賴和小行星國際命名 賴清德:向 他學習讓台灣成為「世界民主 MVP」

發布日期:2024-04-01 新聞來源:民視新聞

副總統賴清德,今(30)日上午出席「賴 和小行星」國際命名發表會,賴清德致詞時 指出,以後在浩瀚宇宙成千上萬閃閃發亮的 星星中,會有來自台灣的光芒,感受到仁醫 賴和對台的影響,並承諾自己就任後,會向 賴和學習,捍衛台灣民主,讓台灣成為世界 民主的 MVP。

更多新聞: 英國鋼琴家又槓中共!貼 「六四坦克人合成照」嗆這句話獲台灣人狂 讚 賴清德致詞時表稱讚,賴和是醫界的典 範,不僅僅妙手回春、視民如親,還是台灣 文學之父,對推動台灣文學發展有非常顯著 貢獻;另外賴和也是民主運動先驅,跟他學 弟蔣渭水一起參加台灣議會請願團,成立台 灣文化協會,賴和可說是不僅直接造福當地 民眾,也深深影響了國家,因此台灣社會對 賴和非常景仰,自己對能受邀出席與有榮 焉。 賴清德表示,他要感謝中央大學校 長周景揚團隊,能夠在浩瀚宇宙中替賴和命 名,大讚「這太了不起」,自己聽得很感 動,這不僅專業還非常有心,讓台灣社會能 夠被國際社會看見,對社會也是莫大鼓 賴清德說,此後自己的心情,在未 勵。 來浩瀚宇宙中,成千上萬閃閃發亮的星星有 來自「台灣」的光芒,這光芒能清楚感受 到,一位好醫師、仁醫,如何盡心力照顧貧 窮民眾;有一位醫師在那樣辛苦、殖民年 代,不忘替人民發聲,助台灣文化發 展。 賴清德承諾,自己 520 上任後,也 會向賴和學習,不僅僅會照顧弱勢民眾,也 會重視教育文化,更重要是捍衛、深化台灣 民主,讓台灣成為國際稱羨的文明國家,讓 台灣成為「世界民主的 MVP」。 【本文 轉載自 2024-03-30/民視新聞網】

相關連結

 <u>https://www.ftvnews.com.tw/news/</u> detai1/2024330W0078

賴和小行星國際命名賴清德:宇宙有台 灣光芒!

發布日期:2024-04-01 新聞來源:新唐人亞太台

國際天文學聯合會近日通過,正式命名編 號 597966 小行星為「賴和(Lai He)」。今 天,賴和基金會舉行頒贈儀式,緬懷台灣新 文學之父賴和對台灣的貢獻,副總統賴清德 親自出席見證。

主持人:「編號剛好在第16號,也剛好 是賴總統第16任。」 深知準總統賴清德 是棒球迷,特別致贈別具意義的球棒文創產 品。賴清德出席活動,見證「賴和小行星國 際命名」頒贈儀式,緬懷台灣新文學之父賴 和對台灣的貢獻。 中華民國副總統 賴清 德「就想要尋找台灣代表性的人物,進入這 個宇宙當中,成千上萬閃閃發亮的星星,有 來自台灣的光芒,讓台灣社會能夠被國際社 會看得見。」 有醫師背景的賴和,不僅 對台灣文學有所貢獻,更是民主運動的先 驅,曾經與蔣渭水參與台灣議會請願團,並 推動成立台灣文化協會。賴清德期盼向賴和 看齊。 中華民國副總統 賴清德「未來我 520 上任之後,我也會向賴和學習,不僅僅 會照顧弱勢的民眾,我也會重視教育文化, 更重要的是會捍衛台灣民主,深化台灣的民 主,讓台灣社會能夠成為國際稱羨的文明國 家,也讓台灣成為世界民主的 MVP • 1 賴和基金會董事長吳潮聰也期

盼,在準總統賴清德的領導下,台灣能面對 國內外各種挑戰,並期望「賴和小行星」照 亮台灣,庇護台灣民主永續發展。 【本 文轉載自 2024-03-30/新唐人亞太台】

相關連結

 <u>https://www.ntdtv.com.tw/b5/2024</u> 0330/video/387219.html

小行星獲命名賴和賴清德:宇宙有光芒 來自台灣

發布日期:2024-04-01 新聞來源:中央通訊社

國際天文學聯合會(IAU)近日正式通過, 將編號 597966 的小行星命名為「賴和(Lai He)」。副總統賴清德說,感動宇宙有光芒 來自台灣,未來將師法賴和照顧弱勢、重視 教育,捍衛台灣民主。

今年是賴和 130 年冥誕,賴和文教基金會 與國立中央大學今天在台灣文學基地舉辦 「賴和小行星」國際命名發表會,緬懷台灣 新文學之父賴和對台灣的貢獻。副總統、國 立中央大學校長周景揚、賴和文教基金會董 事長吳潮聰、賴和長孫賴悅顏等人出

席。 賴和(Lai He)小行星的由來,原 來是中央大學天文研究所鹿林天文台林啟生 及美國馬里蘭大學博士葉泉志,在2008年 1月12日共同發現編號 597966 小行星,而 後彰化高中圖書館退休主任呂興忠與教師游 大立合作,向中央大學天文研究所申請,以 日治時期台灣新文學的啟蒙者賴和為名,國 際天文學聯合會近日正式通過,將小行星命 名為「賴和(Lai He)」。 副總統致詞 表示,賴和是醫界典範,除妙手如春、視病 如親,對於推動台灣文學發展也有顯著貢 獻,更是民主運動先驅,曾與蔣渭水一起參 加台灣議會請願團、參與台灣文化協會成 立,可說是上醫醫國、造福民眾,更影響國 家方向,台灣社會對賴和都非常景 仰。 賴副總統說,感動浩瀚無垠的宇宙 中、成千上萬發亮的星星裡,有來自台灣的 光芒,是一位仁醫盡心盡力照顧貧窮民眾, 在那樣辛苦的年代不忘為台灣民眾發聲。他 未來就任總統後,也將師法賴和照顧弱勢、 重視教育,並捍衛台灣民主、深化台灣民 主,讓台灣成為國際稱羨的國家、成為世界 民主 MVP。 賴和基金會與賴和家屬今天 贈送國立台灣文學館開發的「一桿秤仔球 棒」給賴副總統,期待他就任總統後,持續 以公義捍衛台灣。 【本文轉載自 2024-03-30/中央通訊社】

相關連結

 <u>https://www.cna.com.tw/news/aipl</u> /202403300039.aspx_

紀念台灣新文學之父小行星命名"賴和"

發布日期:2024-04-01 新聞來源:Yahoo!新聞 中央大學天文研究所、鹿林天文台,攜手 美國馬里蘭大學,於2008年1月12日,共 同發現編號「597966小行星」,經過國際 天文學聯合通過。為了緬懷臺灣新文學之父 「賴和」,今天賴和文教基金會與中央大 學...

【本文轉載自 2024-03-30/Yahoo!新聞】

相關連結

<u>https://tw.news.yahoo.com/%E7%B4</u>
 %80%E5%BF%B5%E5%8F%B0%E...

天文館「系外行星與地外生命」揭開外 星生命之謎

發布日期:2024-03-05 新聞來源:青年日報

臺北市立天文科學教育館113年度專家演 講陣容堅強,此次特別邀請國立中央大學天 文研究所教授陳文屏於3月24日下午2時 至4時,在臺北天文館第一演講室主講「系 外行星與地外生命」,帶民眾了解天文科學 對於地外生命探索的最新結果。講座免費參 加,歡迎天文迷至官網踴躍報名。

對於外星人是否充滿想像?是否知道天 文學家如何嚴肅且認真地尋找外星生命的蛛 絲馬跡?目前被發現並確認的系外行星數量 超過5500顆,但依舊只是銀河系裡的冰山 一角,太陽系內許多衛星具有存在生命的條 件,只是過去被忽略,而現在這些「有可能 存在」的地外生命正在敲響研究學者的大 門。 臺北天文館113年度專家演講陣 容包括,各院校教授、科普作家、中研院學 者等專家,內容遍及天文各個領域,包括最 新的生成式AI於天文研究之應用等。此次 由致力於天文科普教育的國立中央大學天文 研究所教授陳文屏主講「系外行星與地外生 命」,為國人揭開揭開外星生命之謎;講座 免費參加,名額有限,民眾可至臺北天文館 官網報名。 【本文轉載自 2024-03-04/ 青年日報】

相關連結

• <u>https://www.ydn.com.tw/news/news</u> InsidePage?chapterID=16...

天文研究受肯定成大物理系許瑞榮教授 榮退獲贈小行星命名榮耀

發布日期:2024-01-08 新聞來源:ow1NEWs

國立成功大學物理系教授許瑞榮在校服務 34.5年,教學、天文科學研究與服務、學 生輔導等備受認同;許教授將於2月退 休,物理系日前特地為他舉辦歡送會並授予 名譽教授;中央大學感佩許瑞榮教授在太空 領域研究之付出與成果,特將鹿林天文台發 現之 611070號小行星命名為許瑞榮小行 星,台長林宏欽當天親自到場頒贈小行星銘 牌,致上最高敬意。

許瑞榮小行星 (Hsurueron), 编號 611070,為 2006 年 7 月 21 日由中央大 學鹿林天文台林宏欽及美國馬里蘭大學葉泉 志博士共同發現,其位於主小行星帶上之天 體,軌道半長軸為 2.349 天文單位,約為 3.5 億公里,公轉週期為 3.6 年;中央大 學小行星命名為許瑞榮小行星,經國際天文 學聯合會(IAU)審查通過。 温馨歡送 會,獲名譽教授頭銜、得到以自己名字命名 小行星銘牌,許瑞榮教授內心滿是歡喜,深 深覺得在成大任教日子「真是幸福快樂 回首來時路,他感謝研究所時 啊」 楊維邦老師帶領與栽培,感恩成大物理系提 供教職及同儕協助與包容;謝謝學術研究團 隊員們一起成就共好;感謝各系教授與助 理,合力推動臺南科普教育;謝謝成大心輔

組協助,讓他有能力輔導學生度過難 許瑞榮教授感性地說,時間過得 關。 **飛快**,34.5 年來教職生涯即將告一個段 落,過去在教學、研究、服務等方耕耘,算 是任務完成,平安下車;接下來將以兼任方 式繼續協助系上師培課程,也會擔任理學院 科學教育中心義工,持續盡一些心 許瑞榮教授 76 年畢業於國立中 力。 央大學,自 78 年 8 月至國立成功大學物 理系任教至今,於服務期間一直以誠懇厚 實、不計個人得失、鍥而不捨投入教學、研 究、服務與輔導;物理系系務會議推薦授予 名譽教授頭銜並經校教評會通過,榮退歡送 會上系主任羅光耀教授親頒名譽教授證 書。 校方表示,許瑞榮教授在教學、 研究與服務重要貢獻: (1) 在教學上 連續多年獲得教育部教學實踐計畫補助,並 以建構融合講授、展演示範與主題實驗的普 通物理課程計畫,獲得教育部教學實踐研究 績優計畫肯定;並帶領學生開發了許多具有 啟發性教材和教具,課程講義均開放於網 站, 無私地提供有興趣師生取用。 (2)在研究上,許瑞榮教授為福衛二號高空大氣 閃電影像儀(簡稱 ISUAL)科學任務主要領 導學者,自 1998 年任務申請至 2017 年任 務結束,帶領團隊執行本項國家級科學任 務,並有多篇重要論文發表,包含一篇「自 然」(Nature) 期刊論文, 大幅改變學界對 於高空短暫發光現象了解,使得 ISUAL 任 務成為近年來大氣電學領域最成功衛星任務 之一,獲得國際學界高度肯定。 (3) 在服務上,創立了成大理學院科學教育中 心,已發展成為南臺灣科學教育重鎮,在其 帶領下歷年來已提供超過 10 萬人次服務; 任職理學院副院長期間,與院內同仁共同推 動本校模組化課程,促成本校教師跨域教學 合作與學生跨域學習,更是本校重要課程改 革指標之一。 本文轉載自【2023-01-05/ow1NEWs]

相關連結

• <u>https://news.owlting.com/article</u> <u>s/574333</u>

中大新聞網報導

迎接紫金山-阿特拉斯大彗星 中央大學天文所舉辦系列活動

發布日期:2024-10-15 文/天文所

迎接近年最亮的彗星 C/2023 A3(紫金山-阿特拉斯),中央大學天文所將在科學一館天文台進行望遠鏡觀測活動。鄭璧嫻攝

中央大學天文研究所將於 10 月 18 日舉辦一系列天文活動,迎接近年最亮的彗星 C/2023 A3(紫金山-阿特拉斯),活動包含專家演講及望遠鏡觀測,讓民眾 有機會親眼見證這顆罕見的彗星。

C/2023 A3(紫金山-阿特拉斯)彗星的出現,為天文愛好者帶來了一次難得的 觀測機會。彗星被發現時,初步推測亮度可達0等。隨著觀測數據的增加,天 文學家對它的亮度預測進行了修正,彗星的亮度比預期還暗,但仍為近年發現 的最亮彗星。它於10月12日通過近地點,此後在日落後可於西南方的天空短 暫可見。隨著時間的推移,彗星的仰角逐漸增高,其亮度也會逐漸減弱。10月 20日前的傍晚被認為是最佳的觀測時機,天文所建議有興趣的民眾把握這段時 間進行觀測。

為了迎接紫金山-阿特拉斯彗星的到來,天文所推出一系列天文活動。10月18 日活動邀請到兩位天文專家,賴彥霖博士與林忠義博士帶領民眾認識彗星,並 介紹與彗星相關的探測任務。主辦單位提供望遠鏡供民眾進行彗星觀測,在天 氣良好的情況下,有機會觀察到彗尾及彗髮等彗星細節。 此次活動不僅為天文愛好者提供了一次深入探索的機會,更讓民眾能夠親身參 與天文現象觀測,是一次難得的學習經驗,邀請所有對天文有興趣的朋友踴躍 參加。更多活動資訊,請洽活動官網 (https://www.astro.ncu.edu.tw/activity/20241018.php)

中央大學天文所將於 10 月 18 日舉辦一系列天文活動,迎接近年最亮的彗星 C/2023 A3(紫金山-阿特拉斯)。照片天文所李昱星攝

活動邀請到兩位天文專家,賴彥霖博士與林忠義博士帶領民眾認識彗星。照片天文所李昱星攝

相關連結

• https://www.astro.ncu.edu.tw/activity/20241018.php

大我無私,大愛無痕 中央大學頒贈證嚴 (Chengyen)小行星

發布日期:2024-09-30 文/秘書室、天文所

中央大學周景揚校長(左)與前教育部部長蔣偉寧(右)贈送小行星銘版給證嚴法師(中), 感念其對世人的貢獻。照片慈濟基金會提供

證嚴法師出生於 1937 年,秉持慈悲喜捨、感恩及尊重愛的理念,倡導眾生平等,創辦慈濟基金會。中央大學感念其奉獻,不畏颱風來襲,9月 30 日校長周 景揚等一行前往花蓮,頒贈編號 555802 證嚴(Chengyen)小行星給證嚴法師, 期許證嚴法師的精神能夠繼續影響世人。

慈濟創立逾半個世紀,長期致力推動慈善服務與急難救助,不分國家、種族、宗教與政治信仰,迄今援助136個國家與地區。其創辦人證嚴法師於慈善、醫療、教育、人文、國際賑災和環境保護工作的努力不遺餘力,讓國際看見臺灣,也促使許多人更加樂於行善。

中央大學周景揚校長表示, 慈濟的精神根植於「慈悲」和「智慧」, 以關懷 之心對待每一個需要幫助的人。證嚴法師以身作則,將這一精神實踐於社會各 個層面,無論是對於災後重建、醫療援助、環境保護,還是貧困弱勢群體的關 懷, 慈濟的足跡無處不在,此次小行星的命名,期許這份理念能高掛天空, 世 世代代傳承。 證嚴法師謙稱地說,何德何能可以接受這樣的榮耀。今天得到這麼大的勉勵 禮物,都是全球慈濟人的投入。慈濟剛創辦時是從日存五毛錢開始,從花蓮訪 貧關懷開始,五十多年後,如今每天面對著國際間的事情,透過科技,與全球 慈濟人對話,了解慈濟人的慈善足跡。證嚴法師以自己曾與太空人的對話,以 及全球慈濟人關懷擁抱受災者的故事,闡述佛法的真空妙有。證嚴法師說,很 感恩大家共同感受到這份鼓勵,慈濟要更積極、邁向永續。

證嚴小行星命名提出後,經國際天文學聯合會(International Astronomical Union, IAU)的小天體命名工作組(Working Group Small Bodies Nomenclature, WGSBN) 審查通過,於2024年8月15日出版的第4卷第11期《小天體命名公告》(WGSBN Bulletin Volume 4,#11)正式發佈。證嚴小行星,編號555802,2007年6月6日由中央大學鹿林天文台林啟生及美國馬里蘭大學的葉泉志博士共同發現,大小約1公里,繞行太陽一圈3.63年(軌道週期),離太陽最近時(近日點)為2.77億公里,最遠時(遠日點)為4.31億公里。

中央大學從 2006 年開始的鹿林巡天計畫,不但曾發現台灣史上的第一顆彗星,同時也發現了 800 多顆小行星,使台灣成為亞洲發現小行星最活躍的地方之一。卓越的天文研究成果,充份展現台灣人以小搏大、努力不懈的精神。期許透過證嚴小行星的命名與頒贈,感恩慈濟「大我無私、大愛無痕」精神,淨化人心、祥和社會。

期許透過證嚴小行星的命名與頒贈, 感恩慈濟「大我無私、大愛無痕」精神。 照片慈濟基金會提供

中央大學致贈編號 555802 證嚴小行星(Chengyen),期許證嚴法師的精神能夠 繼續影響世人。照片慈濟基金會提供 <u>https://ncusec.ncu.edu.tw/news/headlines_content.php?H_ID=4340</u>

2024 戴運軌地球科學營帶領高中學子認識地球科學

發布日期:2024-08-12 文/天文所、秘書室

為期五天的戴運軌地球科學營,吸引許多高中生及高中教師一同參與。照片天 文所提供

2024 戴運軌地球科學營 8 月 12 日至 16 日,於中央大學國鼎光電大樓盛大登場。為了提升地球科學教師的專業能力,並期望能夠鼓勵更多優秀學生投入地球科學領域學習,未來能對環境、科學、以及永續經營提出更多想法及創意,此次活動安排大師講座、教授專題課程、大學教授與高中老師對談等,以此促進高中生端與大學端之間的交流,相互切磋琢磨,激盪出創新思維。

中大天文所葉永烜院士指出,這次戴運軌地球科學營主題講座由中央研究院環 境變遷研究中心特聘研究員許晃雄主講。授課的大師,包括中研院地科研究所 特聘研究員林正洪、台達電子文教基金會執行長張楊乾、中央大學大氣系主任 楊舒芝、國家海洋研究院院長陳建宏等人。同時還安排專題討論、實驗室參觀 等活動,讓學員能夠對大學教育模式有更深入的了解。活動也安排製作海報競 賽項目,可讓學生好好發揮創意,學習團隊合作,作為營隊期間學習成果的檢 驗,同時也提高學員參與度。

今年適逢戴運軌地球科學營五週年,特別增加了兩場論壇,分別是「地球科學 大未來」與「氣候變遷」,分別探討地球科學對 AI、永續、半導體領域的影 響,以及地球系統和氣候變遷等重要議題,透過這兩場論壇的內容及對談,期 望能夠拓展學員視野,收穫更多知識,成為推動其前行的豐滿羽翼。

戴運軌地球科學營不僅升臺灣的科學教育,也喚起年輕學子對自然環境的重 視,並且讓參與的學員從中燃起對地球科學的熱忱及興趣,為培育下一代地科 產業人才努力。

綦振瀛副校長期許活動能激起學子對科學的熱情。照片游佳霖攝

中大學術基金會蔣偉寧董事長,分享自身經驗勉勵學子。照片天文所提供 <u>https://ncusec.ncu.edu.tw/news/headlines_content.php?H_ID=4318</u>

2024 桃園天文嘉年華 七天活動帶你探索天文

發布日期:2024-07-13 文/天文所、秘書室

2024 桃園天文嘉年華,鼓勵更多民眾積極參與科學教育,共同推動桃園市成為 天文與太空城市。照片游佳霖攝

國立中央大學將於113年7月13日至7月19日舉辦為期七天的「2024桃園天 文嘉年華」,旨在推廣天文與太空科學,讓更多人親近星空、探索宇宙奧秘, 並激發對科學的興趣,今年特別與「臺灣太空科學聯盟」攜手合作,希望透過 天文與太空科學的推廣,鼓勵更多民眾積極參與科學教育,共同推動桃園市成 為天文與太空城市,成為臺灣天文與太空教育的領航者,讓全民共同探索浩瀚 宇宙的無限可能。

臺灣科學特殊人才提升計畫主持人、中央大學天文所葉永烜院士表示,「桃園 天文嘉年華」是結合天文學與太空科學的年度盛事,特別感謝參與民眾的支 持,希望能藉此帶動桃園科學教育發展,活動不僅展示天文及太空的無窮魅 力,還能激發科學愛好者的濃厚興趣。

中央大學許秉瑜副校長認為,孩子們藉由本活動親近天文與科學,未來能有機 會投身於基礎研究。今年活動內容豐富多彩,包括科普演講、動手作工作坊、 火星探索 VR、天文故事館、摺紙天文學、航海太陽系的互動遊戲、多元展示 等。中大致力於培養全方位創新型人才,科學為其中重要的一環,期望投身於 活動中所有人的努力,都能夠開花結果。

國科會自然處羅夢凡處長指出,科普與人才培育為國科會重要工作,科學與技術需要不斷傳承,天文與太空都為當前臺灣發展的重點領域,更重要的是,科 普與人才培育都必須與在地連結,給予活動許多肯定。

國家太空中心吳宗信主任分享自身經歷,認為宇宙的神祕令人著迷,透過技術的不斷進步,常常化不可能為可能。回想自己念書時,用著又大又慢的電腦, 無法想像將來會有智慧型手機的誕生,他以"Nothing is impossible."鼓勵現場 孩子,只要勇於嘗試,沒有什麼是不可能的。

活動由小小太空人們揭開序幕,帶領大家探索太空的無限可能,為未來奠定基礎。今年特別推出「旅行到火星」主題展覽,帶領參觀者全面探索這顆引人注目的紅色星球一火星。推廣天文與太空科學教育,激發全民對科學的熱情,不論是未來的科學家們,或是對天文與太空有興趣的民眾,此次的經歷或許會成為他們追尋科學夢想的起點。

「臺灣科學特殊人才提升計畫」透過各類活動及不同方向,致力於科學推廣、 教育深耕及人才培育,充分利用中央大學在天文教學及研究上的優勢,以中大 天文台作為教學基地,激發學子對天文學的熱情。中央大學希望通過參與和支 持這樣的活動,能夠讓更多的年輕人愛上科學,投身於科研工作,為臺灣的科 技發展貢獻自己的力量。

活動由小小太空人們揭開序幕,帶領大家探索太空的無限可能。照片游佳霖攝

活動以中大天文台作為教學基地,激發學子對天文學的熱情。照片游佳霖攝 https://ncusec.ncu.edu.tw/news/headlines_content.php?H_ID=4301

藝術家給科學家的啟示一 葉永烜院士「百花川狂想曲」畫展

發布日期:2024-06-18 文/秘書室

榮獲「總統科學獎」的中央大學葉永烜院士「百花川狂想曲」畫展在中央大學 管理二館展出。照片天文所提供

寧靜的初夏,「總統科學獎」得主葉永烜院士的畫展「百花川狂想曲」在中央 大學管理二館熱鬧展開。6月18日,葉永烜院士更以「藝術家給科學家的啟 示」為題,進行了一場精彩的演講。他認為,藝術與科學是相通的,都是透過 不斷的重複和逐步深化,達到熟能生巧,最終形成獨特的風格。科學家亦是如 此,只要專心投入,終究能將「不可能化為可能」!

葉永烜提到,他是在一個偶然機會開始學油畫,純粹是興趣所在,之所以能夠 一直持續下去,要感謝另一半和兩個女兒的鼓勵。無師自通的他,早期從臨摹 名家的作品開始,如馬諦斯和霍普,都是他很喜歡的畫家,後來為省去洗筆的 麻煩,改用畫刀,週遭的人事物都是他創作靈感來源。

集科學家與藝術家於一身的他,介紹藝術家時如數家珍,更能從科學家的觀點,看出藝術家作品背後隱藏的科學。他認為,畢卡索大膽的創作,有受到愛因斯坦「相對論」的啟發。達利變化萬千的時空作品,則可能受到「量子力

學」的影響。波洛克的作品,則潛藏著數學函數,可能受「非線性動力學」 (分形 Fractal)影響。

除藝術欣賞,他也喜歡藝術家富有哲思的一面,如著名藝術家霍克尼所說的, 「別把成功當作目標,當你越是一心追求它,越無法得到它。因為成功和快樂 一樣,是求不來的,只能接著什麼而來。」又如「畫畫的時候,你會專心到渾 然忘我的地步。人一旦可以抽離自己,能夠經歷的時間就會增加了。」

一路走來,葉永烜認為,科學家與藝術家其實沒有太大分別。藝術家也是從一張白紙開始,熟能生巧,到無人能及。這何嘗不是追求學問的人夢寐以求的境界。他年輕時,指導老師阿爾文教授(Hannes Alfven)責承做研究要專心,不能什麼都做,否則會一事無成,直到今天,他深刻體悟到老師所說的真理。

為培養優秀科學人才,他也發揮巧思,將其主持的「臺灣科學特殊人才提升計畫」活動內容,以馬諦斯為名(Methods of Advanced Tech-niques and Instruments for Solar System Exploration,簡稱 MATISSE),期許像藝術一般自由奔放,卓然有成。

今年七月,葉永烜院士與團隊即將舉辦「桃園天文嘉年華」,旅行到火星靜態 展覽、摺紙天文學等活動皆免費參加。其中,畢卡索 PICASSO 天文繪畫比賽 今年主題為「火星城」,集中於 7/1-7/31 報名收件,共分四組:參賽學前組、 國小低年級組、國小中年級組、國小高年級組,得獎作品將於台北市立天文 館、中大天文台展覽,歡迎大家參加這場太空與天文的盛會。

葉永烜院士感謝校長、副校長、管理學院、EMBA 校友會和職工聯誼會對本次 畫展的支持。照片天文所提供

葉永烜院士「百花川狂想曲」畫展在中央大學管理二館開幕合影。照片天文所 提供

https://ncusec.ncu.edu.tw/news/headlines_content.php?H_ID=4283

建學立師,以彰雅化 「彰化小行星」祝賀彰化建縣三百年

發布日期:2024-05-31 文/秘書室、天文所

天文所所長周翊(左二),於 2024 天文年會開幕式中頒贈彰化小行星,祝賀彰化 建縣三百年。照片林宏欽攝

2024年中華民國天文學會年會假國立彰化師範大學舉辦,為國內天文界一年一度的盛事,5月31日的大會開幕式舉行了彰化(336392 Changhua)小行星頒贈 典禮,浩瀚宇宙、茫茫星海中有一顆彰化小行星閃耀天際。

彰化縣位於臺灣中西部,是臺灣本島面積最小的縣,以人口計則為臺灣第一大 縣,過去臺灣的五大城鎮「一府、二鹿、三艋舺、四寶斗、五番挖」中,彰化 就佔有三席。「建學立師,以彰雅化」彰化縣人才濟濟,具有悠久歷史,文學 界人才輩出,人文氣息濃厚。擁有濕地、潮間帶及八卦山等豐富自然景觀,締 造彰化第一大縣的精彩樣貌。彰化建縣滿 300 年,中央大學特將編號 336392 小 行星致贈給彰化,並祝賀彰化向下一個 300 年邁進!

彰化縣政府參議柯呈枋致詞時表示,未來縣府將持續推廣太空科普講座,落實 天文及太空教育,積極培養學生的素養能力,從天文知識中探索宇宙的奧妙, 進而開拓宏觀的國際視野。去年欣逢彰化建縣 300年,今天在天文學會年會受 贈以「彰化」為名的小行星,特別具有祝福的意義,希望縣運昌隆,邁向下一 個光輝閃耀的 300年。 彰化小行星,編號 336392,2008 年 10 月 23 日由中央大學鹿林天文台蕭翔耀及 美國馬里蘭大學的葉泉志博士共同發現,大小約 2 公里。彰化小行星繞行太陽 一圈 4.33 年(軌道週期),離太陽最近時(近日點)為 3.39 億公里,最遠時 (遠日點)為 4.59 億公里。

中央大學從 2006 年開始的鹿林巡天計畫,不但曾發現臺灣史上的第一顆彗星, 同時也發現了 800 多顆小行星,使臺灣成為亞洲發現小行星最活躍的地方之 一。卓越的天文研究成果,充份展現臺灣人以小搏大、努力不懈的精神,期許 透過小行星的命名與頒贈,看見臺灣更多可貴的價值。

彰化縣政府參議柯呈枋(右一)代表彰化縣政府受贈彰化小行星。照片林宏欽攝 https://ncusec.ncu.edu.tw/news/headlines content.php?H_ID=4275

中央大學頒贈陳其寬小行星 向臺灣建築與藝術大師致敬

發布日期:2024-04-25 文/秘書室

中央大學周景揚校長將編號 236851 陳其寬小行星致贈其家屬,向陳其寬致敬。

為感念中央大學傑出校友暨名譽博士之卓越貢獻,4月25日臺南市美術館舉辦「陳其寬:雙曲·交響」紀念展,中央大學進行陳其寬(236851 Chenchikwan)小行星頒贈儀式,紀念陳其寬先生於建築界與藝術界的傑出成就。

今年適逢陳其寬 103 歲冥誕,臺南市美術館隆重推出「陳其寬:雙曲·交響」 紀念展,以「生活」、「目光心象」、「宇宙」及「建築與家庭」等四大主 題,精心呈現陳其寬一生的建築與藝術成就。陳其寬(1921-2007)出生於北平, 是建築師與藝術家。他的繪畫創作突破傳統中國繪畫窠臼,揉合西方建築概念 與自然意象,以「意眼」觀照大千世界。他於 1995 年獲中華民國第一屆傑出建 築師,2004 年獲國家文化藝術基金會頒布的美術類國家文藝獎。中央大學問 景揚校長表示,陳其寬為中央大學傑出校友,1968 年中大遷校中壢雙連坡,應 邀擔任中壢母校校園建築之總規劃,校園依陳其寬井田棋盤概念精心設計,緣 白相間的中正圖書館位於校園中軸線上,特色為內有天井花園,位居校園核 心,象徵知識的泉源,秉持「誠於中,樸於外」的校訓精神,設計簡約而古 樸。為了表彰他對中央大學校園規劃及在建築界的貢獻,將編號 236851 陳其寬 小行星致贈其家屬,向陳其寬致敬。陳其寬(236851 Chenchikwan)小行星, 2007 年 9 月 15 日由中央大學鹿林天文台林啟生及美國馬里蘭大學的葉泉志博士 共同發現,大小約3.3公里。陳其寬小行星繞行太陽一圈4.31年(軌道週期),離太陽最近時(近日點)為3.29億公里,最遠時(遠日點)為4.66億公里。中央大學從2006年開始的鹿林巡天計畫,不但曾發現台灣史上的第一顆彗星,同時也發現了800多顆小行星,使台灣成為亞洲發現小行星最活躍的地方之一。卓越的天文研究成果,充份展現台灣人以小搏大、努力不懈的精神,期許透過小行星的命名與頒贈,看見台灣更多可貴的價值。

4月25日臺南市美術館舉辦的「陳其寬:雙曲·交響」紀念展,中央大學進行陳其寬(236851Chenchikwan)小行星頒贈儀式。

期許透過小行星的命名與頒贈,看見台灣更多可貴的價值。 https://ncusec.ncu.edu.tw/news/headlines_content.php?H_ID=4255

臺灣新文學之父一賴和小行星 照耀民主自由臺灣

發布日期:2024-03-30 文/秘書室、天文所

感念賴和先生對台灣的卓越貢獻,副總統等重要貴賓齊聚臺灣文學基地,進行 「賴和小行星國際發表會」。陳如枝攝

舉頭仰望星空,看見臺灣新文學之父賴和(597966 Lai He)小行星,看顧臺灣 這一片土地。3月30日賴和文教基金會與國立中央大學於臺灣文學基地共同舉 辦「賴和小行星頒贈儀式」,緬懷賴和先生對臺灣的卓越貢獻。今年適逢賴和 先生 130 年冥誕,亦是賴和文教基金會成立 30 年,意義非凡! 賴和小行星的 命名,緣自彰化高中圖書館退休主任呂興忠與游大立老師合作,向中央大學天 文研究所申請,以日治時期新文學的啟蒙者賴和先生為名,最終經國際天文學 聯合會(IAU)通過,正式命名為「賴和(597966 Lai He)」,期許透過小行星的 命名,看見臺灣更多可貴的人文價值。 副總統賴清德致詞時表示,賴和仁心仁 術,是醫界典範;推動臺灣文學發展,是臺灣新文學之父;也是臺灣民主運動 之先驅。他的一生不僅照拂當地民眾,也深深影響國家,希望未來自己能夠向 賴和學習,不僅照顧臺灣民眾,也重視教育文化,更要深化臺灣民主,讓臺灣 成為世界民主的 MVP。 中央大學周景揚校長指出,從 2006 年開始鹿林巡天計 畫,不但曾發現台灣史上的第一顆彗星,同時也發現了800多顆小行星,使台 灣成為亞洲發現小行星最活躍的地方之一。卓越的天文研究成果,充份展現台 灣人以小搏大、努力不懈的精神。小行星雖是科學研究,但命名以人文內涵為 原則,是為彰顯台灣價值與普世精神。 賴和基金會董事長吳潮聰說,賴和的作 品是寫實主義和人道主義的結合,作品中充滿對社會底層小人物深切的關心, 關懷社會,體恤弱勢,反映台灣社會現象,在台灣文壇有著不可抹滅的貢獻, 影響力更是無遠弗屆。賴和小行星獲得國際命名通過,除彰顯其文學、文化成 就獲肯定外,更盼賴和精神,如星星光芒普照世人,傳遞人文關懷的精神。 賴 副總統與國立中央大學周景揚校長共同致贈「賴和小行星銘版」給賴和家屬及 賴和基金會留念;同時因賴副總統為棒球迷,基金會與家屬特地選擇臺灣文學 館藏品開發「『一桿秤仔』球棒」贈送賴副總統,球棒上刻有編號16,祝福第 16 任總統就任後,持續以公義捍衛臺灣。 賴和小行星,編號597966,2008年1 月12日由中央大學鹿林天文台林啟生及美國馬里蘭大學的葉泉志博士共同發 現,大小約1.9公里。賴和小行星繞行太陽一圈3.61年(軌道週期),離太陽 最近時(近日點)為2.9億公里,最遠時(遠日點)為4.16億公里。 當世人舉 頭仰望賴和小行星,除了象徵賴和在天空,炯炯不滅的光芒,且具垂視看顧臺 灣土地,並在民主自由遭受內外挑戰的當代,陪伴臺灣人勇敢前進的時代意 義。

賴副總統(左)與中央大學周景揚校長(中)共同致贈「賴和小行星銘版」給 賴和家屬代表賴悅顏先生(右)。陳如枝攝

賴和文教基金會董事長吳潮聰(左)致贈中央大學賴和手稿影像集,由校長周 景揚(右)代表接受。陳如枝攝 <u>https://ncusec.ncu.edu.tw/news/headlines_content.php?H_ID=4242</u>